Skip to main content
Log in

Two-sided exponential–geometric distribution: inference and volatility modeling

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

In this paper, two-sided exponential–geometric (TSEG) distribution is proposed and its statistical properties are studied comprehensively. The proposed distribution is applied to the GJR-GARCH model to introduce a new conditional model in forecasting Value-at-Risk (VaR). Nikkei-225 and BIST-100 indexes are analyzed to demonstrate the VaR forecasting performance of GJR-GARCH-TSEG model against the GJR-GARCH models defined under normal, Student-t, skew-T and generalized error innovation distributions. The backtesting methodology is used to evaluate the out-of-sample performance of VaR models. Empirical findings show that GJR-GARCH-TSEG model produces more accurate VaR forecasts than other competitive models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamidis K, Loukas S (1998) A lifetime distribution with decreasing failure rate. Stat Probab Lett 39(1):35–42

    Article  MathSciNet  MATH  Google Scholar 

  • Altun E, Tatlidil H, Özel G, Nadarajah S (2018) A new generalization of skew-T distribution with volatility models. J Stat Comput Simul 88(7):1252–1272

    Article  MathSciNet  Google Scholar 

  • Altun E, Tatlıdil H, Özel G (2019) Conditional ASGT-GARCH approach to value-at-risk. Iran J Sci Technol Trans A Sci 43(1):239–247

    Article  MathSciNet  Google Scholar 

  • Angelidis T, Benos A, Degiannakis S (2004) The use of GARCH models in VaR estimation. Stat Methodol 1(1–2):105–128

    Article  MATH  Google Scholar 

  • Bidram H, Nadarajah S (2016) A new lifetime model with decreasing, increasing, bathtub-shaped, and upside-down bathtub-shaped hazard rate function. Statistics 50(1):139–156

    Article  MathSciNet  MATH  Google Scholar 

  • Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econom 31(3):307–327

    Article  MathSciNet  MATH  Google Scholar 

  • Bollerslev T (1987) A conditionally heteroskedastic time series model for speculative prices and rates of return. Rev Econ Stat 69:542–547

    Article  Google Scholar 

  • Chen Q, Gerlach R, Lu Z (2012) Bayesian value-at-risk and expected shortfall forecasting via the asymmetric Laplace distribution. Comput Stat Data Anal 56(11):3498–3516

    Article  MathSciNet  MATH  Google Scholar 

  • Christoffersen PF (1998) Evaluating interval forecasts. Int Econ Rev 39:841–862

    Article  MathSciNet  Google Scholar 

  • Cont R (2001) Empirical properties of asset returns: stylized facts and statistical issues. Quant Finance 1:223–236

    Article  MATH  Google Scholar 

  • Dendramis Y, Spungin GE, Tzavalis E (2014) Forecasting VaR models under different volatility processes and distributions of return innovations. J Forecast 33(7):515–531

    Article  MathSciNet  MATH  Google Scholar 

  • Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econom J Econ Soc 50:987–1007

    MathSciNet  MATH  Google Scholar 

  • Engle RF, Manganelli S (2004) CAViaR: conditional autoregressive value at risk by regression quantiles. J Bus Econ Stat 22(4):367–381

    Article  MathSciNet  Google Scholar 

  • Erdelyi A, Magnus W, Oberhettinger F, Tricomi FG (1953) Higher transcendental functions. McGraw-Hill, New York

    MATH  Google Scholar 

  • Fernandez C, Steel MF (1998) On Bayesian modeling of fat tails and skewness. J Am Stat Assoc 93(441):359–371

    MathSciNet  MATH  Google Scholar 

  • Glosten LR, Jagannathan R, Runkle DE (1993) On the relation between the expected value and the volatility of the nominal excess return on stocks. J Finance 48(5):1779–1801

    Article  Google Scholar 

  • Hinkley DV, Revankar NS (1977) Estimation of the Pareto law from underreported data: a further analysis. J Econom 5(1):1–11

    Article  MATH  Google Scholar 

  • Kupiec PH (1995) Techniques for verifying the accuracy of risk measurement models. J Deriv 3(2):73–84

    Article  Google Scholar 

  • Lambert P, Laurent S (2001) Modelling financial time series using GARCH-type models and a skewed student density. Mimeo, Université de Liége, New York

    Google Scholar 

  • Louzada F, Roman M, Cancho VG (2011) The complementary exponential geometric distribution: model, properties, and a comparison with its counterpart. Comput Stat Data Anal 55(8):2516–2524

    Article  MathSciNet  MATH  Google Scholar 

  • Louzada F, Marchi V, Roman M (2014) The exponentiated exponential-geometric distribution: a distribution with decreasing, increasing and unimodal failure rate. Statistics 48(1):167–181

    Article  MathSciNet  MATH  Google Scholar 

  • Louzada F, Ramos PL, Perdona GS (2016) Different estimation procedures for the parameters of the extended exponential geometric distribution for medical data. Comput Math Methods Med 2016:1–12

    Article  MathSciNet  MATH  Google Scholar 

  • Lyu Y, Wang P, Wei Y, Ke R (2017) Forecasting the VaR of crude oil market: do alternative distributions help? Energy Econ 66:523–534

    Article  Google Scholar 

  • Nelson DB (1991) Conditional heteroskedasticity in asset returns: a new approach. Econom J Econom Soc 59:347–370

    MathSciNet  MATH  Google Scholar 

  • Sarma M, Thomas S, Shah A (2003) Selection of value-at-risk models. J Forecast 22(4):337–358

    Article  Google Scholar 

  • So MK, Philip LH (2006) Empirical analysis of GARCH models in value at risk estimation. J Int Financ Mark Inst Money 16(2):180–197

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emrah Altun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altun, E. Two-sided exponential–geometric distribution: inference and volatility modeling. Comput Stat 34, 1215–1245 (2019). https://doi.org/10.1007/s00180-019-00873-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-019-00873-3

Keywords

Navigation