Skip to main content
Log in

On the robustness of an epsilon skew extension for Burr III distribution on the real line

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Burr III (BIII) distribution is used in a wide variety of fields, such as lifetime data analysis, reliability theory, and financial literature, and suchlike. It is defined on the positive axis and has two shape parameters, say c and k. These shape parameters make the distribution quite flexible. They also control the tail behaviour of the distribution. In this study, we extend BIII distribution to the real line and also add a skewness parameter, say \(\varepsilon \), with an epsilon skew extension approach. When the parameters c and k have a relationship such that \(ck \le 1 \), it is skew unimodal. Otherwise, it is skew bimodal with the same level of peaks on the negative and positive sides of the real line. Thus, the epsilon skew extension of Burr III (ESBIII) distribution with only three parameters can provide adequate fits for data sets that may have heavy-tailedness, skewness, unimodality or bimodality. A location-scale form of this distribution is also given. Distributional properties are investigated. The maximum likelihood (ML) estimation method for the parameters of ESBIII is considered. The robustness properties of the ML estimators are studied in terms of the boundedness of the influence function. Further, tail behaviour of ESBIII distribution is also examined to explore the robustness of ESBIII distribution against the outliers. The modelling capacity of this distribution is illustrated using two real data examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abd-Elfattah AM, Alharbey AH (2012) Bayesian estimation for Burr distribution type III based on trimmed samples. ISRN Appl Math 250393:1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Abdulah E, Elsalloukh H (2013) Analyzing skewed data with the epsilon skew gamma distribution. J Stat Appl Prob 2(3):195–202

    Article  Google Scholar 

  • Acıtaş S, Kasap P, Şenoǧlu B, Arslan O (2013) One-step M-estimators: Jones and Faddy’s skewed t-distribution. J Appl Stat 40(7):1–15

    Article  MathSciNet  Google Scholar 

  • Ali A, Hasnain SA, Ahmad M (2015) Modified Burr III distribution: properties and applications. Pak J Stat 31(6):697–708

    MathSciNet  Google Scholar 

  • Andrade BB, Rathie PN (2016) Fitting asymmetric bimodal data with selected distributions. J Stat Comput Simul 86(16):3205–3224

    Article  MathSciNet  Google Scholar 

  • Arellano-Valle RB, Gomez HW, Quintana FA (2005) Statistical inference for a general class of asymmetric distributions. J Stat Plan Inference 128(2):427–443

    Article  MathSciNet  MATH  Google Scholar 

  • Arellano-Valle RB, Cortés MA, Gómez HW (2010) An extension of the epsilon-skew-normal distribution. Commun Stat Theory Methods 39(3):912–922

    Article  MathSciNet  MATH  Google Scholar 

  • Arslan O (2009a) Maximum likelihood parameter estimation for the multivariate skew slash distribution. Stat Probab Lett 79(20):2158–2165

    Article  MathSciNet  MATH  Google Scholar 

  • Arslan O (2009b) An alternative multivariate skew Laplace distribution: properties and estimation. Stat Pap 51(4):865–887

    Article  MathSciNet  MATH  Google Scholar 

  • Arslan O, Genç AI (2009) The skew generalized t distribution as the scale mixture of a skew exponential power distribution and its applications in robust estimation. Statistics 43(5):481–498

    Article  MathSciNet  MATH  Google Scholar 

  • Azimi R, Yaghmaei F (2013) Bayesian estimation for the burr type III distribution under type II Doubly censored data. Int J Adv Stat Probab 1(1):1–3

    Article  Google Scholar 

  • Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12(2):171–178

    MathSciNet  MATH  Google Scholar 

  • Azzalini A, Capitanio A (2003) Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution. J R Stat Soc Ser B 65(2):367–389

    Article  MathSciNet  MATH  Google Scholar 

  • Bolfarine H, Martínez-Flórez G, Salinas HS (2013) Bimodal symmetric-asymmetric power-normal families. Commun Stat Theory Methods 47(2):259–276

    Article  MathSciNet  MATH  Google Scholar 

  • Box GEP, Tiao GC (1973) Bayesian inference in statistical analysis. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Burr IW (1942) Cumulative frequency functions. Ann Math Stat 13(2):215–232

    Article  MathSciNet  MATH  Google Scholar 

  • Burr IW (1973) Parameters for a general system of distributions to match a grid of \(\alpha _3\) and \(\alpha _4\). Commun Stat Theory Methods 2(1):1–21

    MathSciNet  Google Scholar 

  • Burr IW, Cislak PJ (1968) On a general system of distributions I. Its curve-shape characteristics II. The sample median. J Am Stat Assoc 63(322):627–635

    MathSciNet  Google Scholar 

  • Çankaya MN (2018) Asymmetric bimodal exponential power distribution on the real line. Entropy 20(23):1–19

    Google Scholar 

  • Çankaya MN, Korbel J (2017) On statistical properties of Jizba–Arimitsu hybrid entropy. Physica A 475:1–10

    Article  MathSciNet  MATH  Google Scholar 

  • Çankaya MN, Bulut YM, Doğru FZ, Arslan O (2015) A bimodal extension of the generalized gamma distribution. Rev Colomb Estad 38(2):353–370

    Article  MathSciNet  Google Scholar 

  • Cooray K (2013) Exponentiated sinh Cauchy distribution with applications. Commun Stat Theory Methods 42(21):3838–3852

    Article  MathSciNet  MATH  Google Scholar 

  • Dexter OC (2015) Some skew-symmetric distributions which include the bimodal ones. Commun Stat Theory Methods 44(3):554–563

    Article  MathSciNet  MATH  Google Scholar 

  • Donatella V, Van Dorp JR (2013) On a bounded bimodal two-sided distribution fitted to the old-Faithful geyser data. J Appl Stat 40(9):1965–1978

    Article  MathSciNet  Google Scholar 

  • Elsalloukh H (2008) The epsilon-skew Laplace distribution. In: The proceedings of the American statistical association, Biometrics Section, Denever Colorado

  • Elsalloukh H, Guardiola JH, Young M (2005) The epsilon-skew exponential power distribution family. Far East J Theor Stat 17(1):97–107

    MathSciNet  MATH  Google Scholar 

  • Embrechts P, Kluppelberg C, Mikosch T (1997) Modelling extremal events for insurance and finance. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Genç AI (2013) A skew extension of the slash distribution via beta-normal distribution. Stat Pap 54(2):427–442

    Article  MathSciNet  MATH  Google Scholar 

  • Genton MG (2004) Skew-elliptical distributions and their applications: a journey beyond normality. Chapman & Hall/CRC, London

    Book  MATH  Google Scholar 

  • Gómez HW, Torres FJ, Bolfarine H (2007) Large-sample inference for the epsilon-skew-t distribution. Commun Stat Theory Methods 36(1):73–81

    Article  MathSciNet  MATH  Google Scholar 

  • Gove JH, Ducey MJ, Leak WB, Zhang L (2008) Rotated sigmoid structures in managed uneven-aged northern hardwork stands: a look at the Burr Type III distribution. Foresty 81(2):161–176

    Article  Google Scholar 

  • Gui W (2014) A generalization of the slashed distribution via alpha skew normal distribution. Stat Methods Appl 23(1):1–17

    Article  MathSciNet  Google Scholar 

  • Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA (1986) Robust statistics: the approach based on influence functions. Wiley, New York

    MATH  Google Scholar 

  • Hao Z, Singh VP (2009) Entropy-based parameter estimation for extended three-parameter Burr III distribution for low-flow frequency analysis. Trans ASABE 52(4):1193–1202

    Article  Google Scholar 

  • Hassan MY, El-Bassiouni MY (2016) Bimodal skew-symmetric normal distribution. Commun Stat Theory Methods 45(5):1527–1541

    Article  MathSciNet  MATH  Google Scholar 

  • Huber PJ (1984) Finite sample breakdown of M- and P-estimators. Ann Stat 12(1):119–126

    Article  MathSciNet  MATH  Google Scholar 

  • Jamalizadeh A, Arabpour AR, Balakrishnan N (2011) A generalized skew two-piece skew-normal distribution. Stat Pap 52(2):431–446

    Article  MathSciNet  MATH  Google Scholar 

  • Jizba P, Korbel J (2016) On q-non-extensive statistics with non-Tsallisian entropy. Physica A 444:808–827

    Article  MathSciNet  MATH  Google Scholar 

  • Jones MC (2009) Kumaraswamy’s distribution: a beta-type distribution with some tractability advantages. Stat Methodol 6:70–81

    Article  MathSciNet  MATH  Google Scholar 

  • Jones MC, Faddy MJ (2003) A skew extension of the t-distribution, with applications. J R Stat Soc Ser B 65:159–175

    Article  MathSciNet  MATH  Google Scholar 

  • Lindsay SR, Wood GR, Woollons RC (1996) Modelling the diameter distribution of forest stands using the Burr distribution. J Appl Stat 23(6):609–620

    Article  Google Scholar 

  • Lucas A (1997) Robustness of the student t based M-estimator. Commun Stat Theory Methods 26(5):1165–1182

    Article  MathSciNet  MATH  Google Scholar 

  • Markovich N (2007) Nonparametric analysis of univariate heavy-tailed data: research and practice, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Mineo AM, Ruggieri M (2005) A software tool for the exponential power distribution: the normalp package. J Stat Softw 12(4):1–24

    Article  Google Scholar 

  • Mudholkar GS, Hutson AD (2000) The epsilon-skew-normal distribution for analyzing near-normal data. J Stat Plan Inference 83(2):291–309

    Article  MathSciNet  MATH  Google Scholar 

  • Prommier Y, Reinhold W, Sunshine M, Varma S (2018) Genomics and bioinformatics group. http://discover.nci.nih.gov. Accessed 10 May 2018

  • Purdom E, Holmes SP (2005) Error distribution for gene expression data. Stat Appl Genet Mol Biol 4(1):2194–6302

    Article  MathSciNet  MATH  Google Scholar 

  • Rathie PN, Silva P, Olinto G (2016) Applications of skew models using generalized logistic distribution. Axioms 5(10):1–26

    MATH  Google Scholar 

  • Rêgo LC, Cintra RJ, Cordeiro GM (2012) On some properties of the beta normal distribution. Commun Stat Theory Methods 41(20):3722–3738

    Article  MathSciNet  MATH  Google Scholar 

  • Rényi A (1961) On measures of entropy and information. ISRN Applied Mathematics. Hungarian Academy of Sciences, Budapest Hungary, Budapest

    MATH  Google Scholar 

  • Rodriguez RN (1977) A guide to the Burr type XII distributions. Biometrika 64(1):129–134

    Article  MathSciNet  MATH  Google Scholar 

  • Shams HS, Alamatsaz MH (2013) Alpha–Skew–Laplace distribution. Stat Probab Lett 83(3):774–782

    Article  MathSciNet  MATH  Google Scholar 

  • Shannon CE (1961) Two-way communication channels. In: Proceedings of the fourth Berkeley symposium on mathematical statistics and probability, volume 1: contributions to the theory of statistics, The Regents of the University of California

  • Shao Q, Chen YD, Zhang L (2008) An extension of three-parameter Burr III distribution for low-flow frequency analysis. Comput Stat Data Anal 52(3):1304–1314

    Article  MATH  Google Scholar 

  • Subbotin MT (1923) On the law of frequency of errors. Mat Sb 31:296–301

    MATH  Google Scholar 

  • Swamee PK, Rathie PN (2007) Invertible alternatives to normal and lognormal distributions. J Hydrol Eng 12(2):218–221

    Article  Google Scholar 

  • Tadikamalla PR (1980) A look at the Burr and related distributions. Int Stat Rev 48(3):337–344

    Article  MathSciNet  MATH  Google Scholar 

  • Venegas O, Hugo SS, Gallardo DI, Bolfarine H, Gómez HW (2017) Bimodality based on the generalized skew-normal distribution. J Stat Comput Simul 88(1):156–181

    Article  MathSciNet  Google Scholar 

  • Wang FK, Keats JB, Zimmer WJ (1996) Maximum likelihood estimation of the Burr XII parameters with censored and uncensored data. Microelectron Reliab 36(3):359–362

    Article  Google Scholar 

  • Wingo DR (1983a) Maximum Likelihood Methods for fitting the Burr type XII distribution of life test data. Bio Met J 25(1):77–84

    MathSciNet  MATH  Google Scholar 

  • Wingo DR (1983b) Estimating the location of the Cauchy distribution by numerical global optimization. Commun Stat-Simul C 12(2):201–212

    Article  Google Scholar 

  • Zimmer WJ, Keats JB, Wang FK (1998) The Burr XII distribution in reliability analysis. J Qual Technol 30(4):386–394

    Article  Google Scholar 

  • Zoraghi N, Abbasi B, Niaki STA, Abdi M (2012) Estimating the four parameters of the Burr III distribution using a hybrid method of variable neighborhood search and iterated local search algorithms. Appl Math Comput 218(19):9664–9675

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions. We would like to say our special thanks to the Editorial Board Members. We thank the native speaker who supported us for representation in the formal organization of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Yalçınkaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 2.4

$$\begin{aligned} \int _{{\mathbb {R}}}f^{\alpha }(x)dx =\int _{-\infty }^{\mu } f_{-}^{\alpha }(x)dx+\int _{\mu }^{\infty } f_{+}^{\alpha }(x)dx, \end{aligned}$$

where

$$\begin{aligned} f_{-}(x)= & {} \frac{ck}{2\sigma } \bigg (\frac{-(x-\mu )}{\sigma (1-\varepsilon )}\bigg )^{-(c+1)}\Big \{1+\bigg (\frac{-(x-\mu )}{\sigma (1-\varepsilon )}\bigg )^{-c} \Big \}^{-(k+1)}, \\ f_{+}(x)= & {} \frac{ck}{2\sigma } \bigg (\frac{x-\mu }{\sigma (1+\varepsilon )}\bigg )^{-(c+1)}\Big \{1+\bigg (\frac{x-\mu }{\sigma (1+\varepsilon )}\bigg )^{-c} \Big \}^{-(k+1)}. \end{aligned}$$

Now consider the integral \(\int _{\mu }^{\infty } f_{+}^{\alpha }(x)dx\). This integral is analytically obtained by applying the transformations, \(y=\frac{x-\mu }{\sigma (1+\varepsilon )}\), \(u=y^{-c}\), \(v=1+u\) and \(z=1/v\), consecutively. These steps are given as follows.

$$\begin{aligned} \int _{\mu }^{\infty } f_{+}^{\alpha }(x)dx= & {} \int _{\mu }^{\infty } \bigg [\frac{ck}{2\sigma } \bigg (\frac{x-\mu }{\sigma (1+\varepsilon )}\bigg )^{-(c+1)}\Big \{1+\bigg (\frac{x-\mu }{\sigma (1+\varepsilon )}\bigg )^{-c} \Big \}^{-(k+1)}\bigg ]^{\alpha }dx \\= & {} \bigg (\frac{ck}{2\sigma }\bigg )^{\alpha }\sigma (1+\varepsilon )\int _{0}^{\infty } y^{-\alpha (c+1)}\Big (1+y^{-c}\Big )^{-\alpha (k+1)}dy \\= & {} \bigg (\frac{ck}{2\sigma }\bigg )^{\alpha }\frac{\sigma (1+\varepsilon )}{c}\int _{0}^{\infty } u^{(\alpha -1)(1+1/c)}(1+u)^{-\alpha (k+1)}du \\= & {} \bigg (\frac{ck}{2\sigma }\bigg )^{\alpha }\frac{\sigma (1+\varepsilon )}{c}\int _{1}^{\infty } (v-1)^{(\alpha -1)(1+1/c)}v^{-\alpha (k+1)}dv \\= & {} \bigg (\frac{ck}{2\sigma }\bigg )^{\alpha }\frac{\sigma (1+\varepsilon )}{c}\int _{0}^{1} z^{\alpha (k-1/c)+1/c-1}(1-z)^{(\alpha -1)(1+1/c)}dz \\= & {} \bigg (\frac{ck}{2\sigma }\bigg )^{\alpha }\frac{\sigma (1+\varepsilon )}{c}B\Big (\alpha (k-1/c)+1/c , \alpha (1+1/c)-1/c\Big ), \end{aligned}$$

where \(\alpha (k-1/c)+1/c>0\), \(\alpha (1+1/c)-1/c>0\). Similarly, the other integral is obtained as

$$\begin{aligned} \int _{-\infty }^{\mu } f_{-}^{\alpha }(x)dx=\bigg (\frac{ck}{2\sigma }\bigg )^{\alpha }\frac{\sigma (1-\varepsilon )}{c}B\Big (\alpha (k-1/c)+1/c , \alpha (1+1/c)-1/c\Big ), \end{aligned}$$

where \(\alpha (k-1/c)+1/c>0\), \(\alpha (1+1/c)-1/c>0\).

Then, the Rényi entropy is

$$\begin{aligned} J_{\mathbb {R}}(\alpha )=\frac{1}{1-\alpha }\log \bigg [\Big (\frac{ck}{2\sigma }\Big )^{\alpha }\frac{2\sigma }{c}B\Big (\alpha (k-1/c)+1/c , \alpha (1+1/c)-1/c\Big ) \bigg ], \end{aligned}$$

where \(\alpha (k-1/c)+1/c>0\)\(\alpha (1+1/c)-1/c>0\),  \(\alpha >0\) and \(\alpha \ne 1\).

The Shannon entropy is obtained by finding \(\underset{\alpha \rightarrow 1}{\lim } J_{\mathbb {R}}(\alpha )\). One can apply L’Hôpital rule to find this limit. Thus,

$$\begin{aligned} \lim _{\alpha \rightarrow 1}J_{\mathbb {R}}(\alpha )=(k+1)\psi (k+1)+(1+1/c)\gamma +(1/c-k)\psi (k)+\log \Big (\frac{2\sigma }{ck}\Big ), \end{aligned}$$

which is the Shannon entropy. Here \(B(\cdot )\) is beta function, \(\psi (\cdot )\) is digamma function and \(\gamma \) is Euler constant. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çankaya, M.N., Yalçınkaya, A., Altındaǧ, Ö. et al. On the robustness of an epsilon skew extension for Burr III distribution on the real line. Comput Stat 34, 1247–1273 (2019). https://doi.org/10.1007/s00180-018-0859-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-018-0859-y

Keywords

Navigation