Skip to main content

Median constrained bucket order rank aggregation

Abstract

The rank aggregation problem can be summarized as the problem of aggregating individual preferences expressed by a set of judges to obtain a ranking that represents the best synthesis of their choices. Several approaches for handling this problem have been proposed and are generally linked with either axiomatic frameworks or alternative strategies. In this paper, we present a new definition of median ranking and frame it within the Kemeny’s axiomatic framework. Moreover, we show the usefulness of our approach in a practical case about triage prioritization.

This is a preview of subscription content, access via your institution.

Notes

  1. The first axiom states that the distance measure must be a metric. The second axiom is about the invariance of the distance under a random permutations of the items. The third axiom is about consistency in measurement: the distance between two rankings does not change after deleting a set of items that agrees in rank for both rankings. The last axiom is the statement of a measurement unit: the minimum distance is equal to one.

References

  • Aledo JA, Gámez JA, Molina D (2013) Tackling the rank aggregation problem with evolutionary algorithms. Appl Math Comput 222:632–644

    MathSciNet  MATH  Google Scholar 

  • Aledo JA, Gámez JA, Rosete A (2017a) Partial evaluation in rank aggregation problems. Comput Oper Res 78:299–304

    MathSciNet  MATH  Article  Google Scholar 

  • Aledo JA, Gámez JA, Rosete A (2017b) Utopia in the solution of the bucket order problem. Decis Support Syst 97:69–80

    Article  Google Scholar 

  • Aledo JA, Gámez JA, Rosete A (2018) Approaching rank aggregation problems by using evolution strategies: the case of the optimal bucket order problem. Eur J Oper Res 270(3):982–998

    MathSciNet  MATH  Article  Google Scholar 

  • Amodio S, D’Ambrosio A, Siciliano R (2016) Accurate algorithms for identifying the median ranking when dealing with weak and partial rankings under the Kemeny axiomatic approach. Eur J Oper Res 249(2):667–676

    MathSciNet  MATH  Article  Google Scholar 

  • Asfaw D, Vitelli V, Sørensen Ø, Arjas E, Frigessi A (2017) Time-varying rankings with the Bayesian Mallows model. Statistics 6(1):14–30

    MathSciNet  Article  Google Scholar 

  • Badal PS, Das A (2018) Efficient algorithms using subiterative convergence for Kemeny ranking problem. Comput Oper Res 98:198–210

    MathSciNet  MATH  Article  Google Scholar 

  • Biernacki C, Jacques J (2013) A generative model for rank data based on insertion sort algorithm. Comput Stat Data Anal 58:162–176

    MathSciNet  MATH  Article  Google Scholar 

  • Bradley RA, Terry ME (1952) Rank analysis of incomplete block designs: I. The method of paired comparisons. Biometrika 39(3/4):324–345

    MathSciNet  MATH  Article  Google Scholar 

  • Brentari E, Dancelli L, Manisera M (2016) Clustering ranking data in market segmentation: a case study on the Italian McDonald’s customers’ preferences. J Appl Stat 43(11):1959–1976

    MathSciNet  Article  Google Scholar 

  • Brusco MJ, Stahl S (2006) Branch-and-bound applications in combinatorial data analysis. Springer, New York

    MATH  Google Scholar 

  • Busing FM (2006) Avoiding degeneracy in metric unfolding by penalizing the intercept. Br J Math Stat Psychol 59(2):419–427

    MathSciNet  Article  Google Scholar 

  • Busing FM, Groenen PJ, Heiser WJ (2005) Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation. Psychometrika 70(1):71–98

    MathSciNet  MATH  Article  Google Scholar 

  • Busse LM, Orbanz P, Buhmann JM (2007) Cluster analysis of heterogeneous rank data. In: Proceedings of the 24th international conference on machine learning. ACM, New York, pp 113–120

  • Cohen A, Mallows C (1980) Analysis of ranking data. Tech. rep., AT&T Bell Laboratories Memorandum, Murray Hill

  • Cook WD (2006) Distance-based and ad hoc consensus models in ordinal preference ranking. Eur J Oper Res 172(2):369–385

    MathSciNet  MATH  Article  Google Scholar 

  • Cook WD, Kress M, Seiford LM (1997) A general framework for distance-based consensus in ordinal ranking models. Eur J Oper Res 96(2):392–397

    MATH  Article  Google Scholar 

  • Corain L, Salmaso L (2007) A non-parametric method for defining a global preference ranking of industrial products. J Appl Stat 34(2):203–216

    MathSciNet  MATH  Article  Google Scholar 

  • D’Ambrosio A (2008) Tree based methods for data editing and preference rankings. PhD thesis, Doctoral dissertation, Università degli Studi di Napoli Federico II, http://www.fedoa.unina.it/2746/

  • D’Ambrosio A, Heiser WJ (2016) A recursive partitioning method for the prediction of preference rankings based upon Kemeny distances. Psychometrika 81(3):774–794

    MathSciNet  MATH  Article  Google Scholar 

  • D’Ambrosio A, Amodio S, Iorio C (2015) Two algorithms for finding optimal solutions of the Kemeny rank aggregation problem for full rankings. Electron J Appl Stat Anal 8(2):198–213

    MathSciNet  Google Scholar 

  • D’Ambrosio A, Amodio S, Mazzeo G (2016) ConsRank, compute the median ranking(s) according to the Kemeny’s axiomatic approach. R package version 2.0.0. https://cran.r-project.org/web/packages/ConsRank/index.html/

  • D’Ambrosio A, Mazzeo G, Iorio C, Siciliano R (2017) A differential evolution algorithm for finding the median ranking under the kemeny axiomatic approach. Comput Oper Res 82:126–138

    MathSciNet  MATH  Article  Google Scholar 

  • Deng K, Han S, Li KJ, Liu JS (2014) Bayesian aggregation of order-based rank data. J Am Stat Assoc 109(507):1023–1039

    MathSciNet  MATH  Article  Google Scholar 

  • Desarkar MS, Sarkar S, Mitra P (2016) Preference relations based unsupervised rank aggregation for metasearch. Expert Syst Appl 49:86–98

    Article  Google Scholar 

  • Dittrich R, Katzenbeisser W, Reisinger H (2000) The analysis of rank ordered preference data based on Bradley–Terry type models. OR Spectr 22(1):117–134

    MATH  Article  Google Scholar 

  • Dopazo E, Martínez-Céspedes ML (2017) Rank aggregation methods dealing with ordinal uncertain preferences. Expert Syst Appl 78:103–109

    Article  Google Scholar 

  • Dwork C, Kumar R, Naor M, Sivakumar D (2001) Rank aggregation methods for the web. In: Proceedings of the 10th international conference on World Wide Web, ACM, New York, NY, pp 613–622

  • Emond EJ, Mason DW (2000) A new technique for high level decision support. Department of National Defence Canada, Operational Research Division, Directorate of Operational Research (Corporate, Air & Maritime). http://cradpdf.drdc-rddc.gc.ca/PDFS/zbc84/p513851.pdf

  • Emond EJ, Mason DW (2002) A new rank correlation coefficient with application to the consensus ranking problem. J Multi-Criteria Decis Anal 11(1):17–28

    MATH  Article  Google Scholar 

  • Feigin PD, Alvo M (1986) Intergroup diversity and concordance for ranking data: an approach via metrics for permutations. Ann Stat 4(2):691–707

    MathSciNet  MATH  Article  Google Scholar 

  • Fields EB, Okudan GE, Ashour OM (2013) Rank aggregation methods comparison: a case for triage prioritization. Expert Syst Appl 40(4):1305–1311

    Article  Google Scholar 

  • Fienberg SE, Larntz K (1976) Log linear representation for paired and multiple comparisons models. Biometrika 63(2):245–254

    MathSciNet  MATH  Article  Google Scholar 

  • Fürnkranz J, Hüllermeier E (2010) Preference learning: an introduction. Springer, Berlin

    MATH  Google Scholar 

  • Gionis A, Mannila H, Puolamäki K, Ukkonen A (2006) Algorithms for discovering bucket orders from data. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 561–566

  • Hall P, Schimek MG (2012) Moderate-deviation-based inference for random degeneration in paired rank lists. J Am Stat Assoc 107(498):661–672

    MathSciNet  MATH  Article  Google Scholar 

  • Heiser WJ, D’Ambrosio A (2013) Clustering and prediction of rankings within a Kemeny distance framework. In: Lausen B, Van den Poel D, Ultsch A (eds) Algorithms from and for nature and life. Springer, Cham, pp 19–31

    Chapter  Google Scholar 

  • Kemeny JG, Snell JL (1962) Mathematical models in the social sciences. Blaisdell Publishing Company, New York

    MATH  Google Scholar 

  • Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1/2):81–93

    MATH  Article  Google Scholar 

  • Kenkre S, Khan A, Pandit V (2011) On discovering bucket orders from preference data. In: Proceedings of the 2011 SIAM international conference on data mining, SIAM, pp 872–883

  • Lee PH, Yu PL (2010) Distance-based tree models for ranking data. Comput Stat Data Anal 54(6):1672–1682

    MathSciNet  MATH  Article  Google Scholar 

  • Lin S (2010) Space oriented rank-based data integration. Stat Appl Genet Mol Biol 9(1):1544–6115

    MathSciNet  Article  Google Scholar 

  • Lin S, Ding J (2009) Integration of ranked lists via cross entropy Monte Carlo with applications to mRNA and microRNA studies. Biometrics 65(1):9–18

    MathSciNet  MATH  Article  Google Scholar 

  • Mallows CL (1957) Non-null ranking models. I. Biometrika 44(1/2):114–130

    MathSciNet  MATH  Article  Google Scholar 

  • Marden JI (1996) Analyzing and modeling rank data. CRC Press, London

    MATH  Google Scholar 

  • Mattei N, Walsh T (2013) Preflib: a library of preference data http://preflib.org. In: Proceedings of the 3rd international conference on algorithmic decision theory (ADT 2013), lecture notes in artificial intelligence. Springer, Berlin, pp 259–270

  • Meila M, Phadnis K, Patterson A, Bilmes J (2007) Consensus ranking under the exponential model. In: Proceedings of the twenty-third conference annual conference on uncertainty in artificial intelligence (UAI-07). AUAI Press, Corvallis, pp 285–294

  • Murphy TB, Martin D (2003) Mixtures of distance-based models for ranking data. Comput Stat Data Anal 41(3):645–655

    MathSciNet  MATH  Article  Google Scholar 

  • Onwubolu G, Davendra D (2009) Differential evolution: a handbook for global permutation-based combinatorial optimization. Springer, Berlin

    MATH  Book  Google Scholar 

  • Plaia A, Sciandra M (2017) Weighted distance-based trees for ranking data. Adv Data Anal Classif. https://doi.org/10.1007/s11634-017-0306-x

  • Sampath S, Verducci JS (2013) Detecting the end of agreement between two long ranked lists. Stat Anal Data Min ASA Data Sci J 6(6):458–471

    MathSciNet  MATH  Article  Google Scholar 

  • Sciandra M, Plaia A, Capursi V (2017) Classification trees for multivariate ordinal response: an application to student evaluation teaching. Qual Quant 51(2):641–655

    Article  Google Scholar 

  • Storn R, Price K (1995) Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Tech. Rep. TR-95-012, ICSI Berkeley. http://www.icsi.berkeley.edu/ftp/global/pub/techreports/1995/tr-95-012.pdf

  • Švendová V, Schimek MG (2017) A novel method for estimating the common signals for consensus across multiple ranked lists. Comput Stat Data Anal 115:122–135

    MathSciNet  MATH  Article  Google Scholar 

  • Telcs A, Kosztyán ZT, Török Á (2016) Unbiased one-dimensional university ranking-application-based preference ordering. J Appl Stat 43(1):212–228

    MathSciNet  Article  Google Scholar 

  • Thompson GL (1993) Generalized permutation polytopes and exploratory graphical methods for ranked data. Ann Stat 21(3):1401–1430

    MathSciNet  MATH  Article  Google Scholar 

  • Ukkonen A, Puolamäki K, Gionis A, Mannila H (2009) A randomized approximation algorithm for computing bucket orders. Inf Process Lett 109(7):356–359

    MathSciNet  MATH  Article  Google Scholar 

  • Yu PL, Lee PH, Wan W (2013) Factor analysis for paired ranked data with application on parent–child value orientation preference data. Comput Stat 28(5):1915–1945

    MathSciNet  MATH  Article  Google Scholar 

  • Yu PL, Lee PH, Cheung S, Lau EY, Mok DS, Hui HC (2016) Logit tree models for discrete choice data with application to advice-seeking preferences among chinese christians. Comput Stat 31(2):799–827

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Dr. Giuseppe Zollo and Dr. Lorella Cannavacciuolo of the University of Naples Federico II for kindly providing us the triage dataset. The authors would also like to thank both the Editor and the two anonymous reviewers, whose comments highly contributed to improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio D’Ambrosio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partially supported by the H2020-EU.3.5.4. Project ‘Moving Towards Adaptive Governance in Complexity: Informing Nexus Security (MAGIC)’, Grant Agreement Number 689669.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

D’Ambrosio, A., Iorio, C., Staiano, M. et al. Median constrained bucket order rank aggregation. Comput Stat 34, 787–802 (2019). https://doi.org/10.1007/s00180-018-0858-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-018-0858-z

Keywords

  • Tied rankings
  • Median ranking
  • Kemeny distance
  • Triage prioritization