Skip to main content
Log in

Local optimization of black-box functions with high or infinite-dimensional inputs: application to nuclear safety

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Black-box optimization problems when the input space is a high-dimensional space or a function space appear in more and more applications. In this context, the methods available for finite-dimensional data do not apply. The aim is then to propose a general method for optimization involving dimension reduction techniques. Different dimension reduction basis are considered (including data-driven basis). The methodology is illustrated on simulated functional data. The choice of the different parameters, in particular the dimension of the approximation space, is discussed. The method is finally applied to a problem of nuclear safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Source: CEA

Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. French Alternative Energies and Atomic Energy Commission (Commissariat à l’énergie atomique et aux énergies alternatives), government-funded technological research organisation. http://www.cea.fr/.

References

  • Box GEP, Hunter JS (1957) Multi-factor experimental designs for exploring response surfaces. Ann Math Stat 28(1):195–241

    Article  MathSciNet  MATH  Google Scholar 

  • Brunel É, Mas A, Roche A (2016) Non-asymptotic adaptive prediction in functional linear models. J Multivariate Anal 143:208–232

    Article  MathSciNet  MATH  Google Scholar 

  • Cardot H, Ferraty F, Sarda P (1999) Functional linear model. Stat Probab Lett 45(1):11–22

    Article  MathSciNet  MATH  Google Scholar 

  • Cardot H, Sarda P (2010) Functional linear regression. In: Ferraty F, Romain Y (eds) Handbook of functional data analysis. Oxford University Press, pp 21–46

  • Delaigle A, Hall P (2012) Methodology and theory for partial least squares applied to functional data. Ann Stat 40(1):322–352

    Article  MathSciNet  MATH  Google Scholar 

  • Draper NR, Guttman I (1988) An index of rotatability. Technometrics 30(1):105–111

    Article  MathSciNet  MATH  Google Scholar 

  • Draper NR, Lin DKJ (1990) Small response-surface designs. Technometrics 32(2):187–194

    Article  MathSciNet  Google Scholar 

  • Draper NR, Pukelsheim F (1990) Another look at rotatability. Technometrics 32(2):195–202

    Article  MathSciNet  MATH  Google Scholar 

  • Durantin C, Marzat J, Balesdent M (2016) Analysis of multi-objective Kriging-based methods for constrained global optimization. Comput Optim Appl 63(3):903–926

    Article  MathSciNet  MATH  Google Scholar 

  • Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems, mathematics and its applications, vol 375. Kluwer Academic Publishers Group, Dordrecht

    Book  MATH  Google Scholar 

  • Georgiou SD, Stylianou S, Aggarwal M (2014) A class of composite designs for response surface methodology. Comput Stat Data Anal 71:1124–1133

    Article  MathSciNet  Google Scholar 

  • Gunst RF, Mason RL (2009) Fractional factorial design. WIREs Comput Stat 1(2):234–244

    Article  Google Scholar 

  • Hall P (2011) Principal component analysis for functional data: methodology, theory, and discussion. In: The Oxford handbook of functional data analysis, pp 210–234. Oxford University Press, Oxford

  • Khuri AI (1988) A measure of rotatability for response-surface designs. Technometrics 30(1):95–104

    Article  MathSciNet  MATH  Google Scholar 

  • Khuri AI (2001) An overview of the use of generalized linear models in response surface methodology. In: Proceedings of the third world congress of nonlinear analysts, Part 3 (Catania, 2000), vol 47, pp 2023–2034 . No. 3

  • Khuri AI, Mukhopadhyay S (2010) Response surface methodology. Wiley Interdiscip Rev Comput Stat 2(2):128–149

    Article  Google Scholar 

  • Lee SY, Zhang W, Song XY (2002) Estimating the covariance function with functional data. Br J Math Stat Psychol 55(2):247–261

    Article  MathSciNet  Google Scholar 

  • Lenth RV (2009) Response-surface methods in R, using RSM. J Stat Softw 32(7):1–17

    Article  Google Scholar 

  • Liu H, Xu S, Ma Y, Wang X (2015a) Global optimization of expensive black box functions using potential Lipschitz constants and response surfaces. J Glob Optim 63(2):229–251

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Z, Li W, Yang M (2015b) Two general extension algorithms of latin hypercube sampling. Math Probl Eng pp Art. ID 450,492,9

  • Morris MD (2000) A class of three-level experimental designs for response surface modeling. Technometrics 42(2):111–121

    Article  Google Scholar 

  • Müller HG, Stadtmüller U (2005) Generalized functional linear models. Ann Stat 33(2):774–805

    Article  MathSciNet  MATH  Google Scholar 

  • Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology. Process and product optimization using designed experiments, 3rd edn. Wiley series in probability and statistics. Wiley, Hoboken

    MATH  Google Scholar 

  • Park SH, Lim JH, Baba Y (1993) A measure of rotatability for second order response surface designs. Ann Inst Stat Math 45(4):655–664

    Article  MathSciNet  MATH  Google Scholar 

  • Pázman A (1986) Foundations of optimum experimental design, mathematics and its applications (East European Series), vol 14. D. Reidel Publishing Co., Dordrecht (Translated from the Czech)

  • Preda C, Saporta G (2005) PLS regression on a stochastic process. Comput Stat Data Anal 48(1):149–158

    Article  MathSciNet  MATH  Google Scholar 

  • Qi X, Luo R (2015) Sparse principal component analysis in Hilbert space. Scand J Stat 42(1):270–289

    Article  MathSciNet  MATH  Google Scholar 

  • Queipo N, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Tucker P (2005) Surrogate-based analysis and optimization. Prog Aerosp Sci 41(1):1–28

    Article  Google Scholar 

  • Ramsay J, Silverman B (2005) Functional data analysis, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Ramsay JO, Dalzell CJ (1991) Some tools for functional data analysis. J R Stat Soc B Methods 53(3):539–572

    MathSciNet  MATH  Google Scholar 

  • Rice JA, Silverman BW (1991) Estimating the mean and covariance structure nonparametrically when the data are curves. J R Stat Soc Ser B 53(1):233–243

    MathSciNet  MATH  Google Scholar 

  • Simpson T, Poplinski J, Koch P, Allen J (2001) Metamodels for computer-based engineering design: survey and recommendations. Eng Comput 17(2):129–150

    Article  MATH  Google Scholar 

  • Tang Y, Chen J, Wei J (2013) A surrogate-based particle swarm optimization algorithm for solving optimization problems with expensive black box functions. Eng Optim 45(5):557–576

    Article  MathSciNet  Google Scholar 

  • Wold H (1975) Soft modelling by latent variables: the non-linear iterative partial least squares (NIPALS) approach. In: Perspectives in probability and statistics (papers in honour of M. S. Bartlett on the occasion of his 65th birthday), pp 117–142. Applied Probability Trust, University of Sheffield, Sheffield

  • Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comput Graph Stat 15(2):265–286

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelina Roche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roche, A. Local optimization of black-box functions with high or infinite-dimensional inputs: application to nuclear safety. Comput Stat 33, 467–485 (2018). https://doi.org/10.1007/s00180-017-0751-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-017-0751-1

Keywords

Navigation