Skip to main content
Log in

Identifying local smoothness for spatially inhomogeneous functions

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

We consider a problem of estimating local smoothness of a spatially inhomogeneous function from noisy data under the framework of smoothing splines. Most existing studies related to this problem deal with estimation induced by a single smoothing parameter or partially local smoothing parameters, which may not be efficient to characterize various degrees of smoothness of the underlying function when it is spatially varying. In this paper, we propose a new nonparametric method to estimate local smoothness of the function based on a moving local risk minimization coupled with spatially adaptive smoothing splines. The proposed method provides full information of the local smoothness at every location on the entire data domain, so that it is able to understand the degrees of spatial inhomogeneity of the function. A successful estimate of the local smoothness is useful for identifying abrupt changes of smoothness of the data, performing functional clustering and improving the uniformity of coverage of the confidence intervals of smoothing splines. We further consider a nontrivial extension of the local smoothness of inhomogeneous two-dimensional functions or spatial fields. Empirical performance of the proposed method is evaluated through numerical examples, which demonstrates promising results of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Antoniadis A, Brossat X, Cugliari J, Poggi JM (2013) Clustering functional data using wavelets. Int J Wavelets Multiresolut Inf Process 11(01):1350003

    Article  MathSciNet  MATH  Google Scholar 

  • Chaudhuri P, Marron JS (1999) SiZer for exploration of structures in curves. J Am Stat Assoc 94:807–823

    Article  MathSciNet  MATH  Google Scholar 

  • Cuevas A (2014) A partial overview of the theory of statistics with functional data. J Stat Plan Inference 147:1–23

    Article  MathSciNet  MATH  Google Scholar 

  • Cummins DJ, Filloon TG, Nychka D (2001) Confidence intervals for nonparametric curve estimates: toward more uniform pointwise coverage. J Am Stat Assoc 96:233–246

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho DL, Johnstone IM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho DL, Johnstone IM, Kerkyacharian G, Picard D (1995) Wavelet shrinkage: asymptopia? J R Stat Soc Series B 57:301–369

    MathSciNet  MATH  Google Scholar 

  • Erästö P, Holmström L (2005) Bayesian multiscale smoothing for making inferences about features in scatter plots. J Comput Graph Stat 14:569–589

    Article  Google Scholar 

  • Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Chapman & Hall, London

    MATH  Google Scholar 

  • Fryzlewicz P, Oh H-S (2011) Thick-pen transform for time series. J R Stat Soc Series B 73:499–529

    Article  MathSciNet  MATH  Google Scholar 

  • Giacofci M, Lambert-Lacroix S, Marot G, Picard F (2013) Wavelet-based clustering for mixed-effects functional models in high dimension. Biometrics 69:31–40

    Article  MathSciNet  MATH  Google Scholar 

  • Goia A, Vieu P (2016) An introduction to recent advances in high/infinite dimensional statistics. J Multivar Stat 146:1–6

    Article  MathSciNet  MATH  Google Scholar 

  • Green PJ, Silverman BW (1994) Nonparametric regression and generalized linear models. Chapman & Hall, London

    Book  MATH  Google Scholar 

  • Hannig J, Lee TCM (2006) Robust SiZer for exploration of regression structures and outlier detection. J Comput Graph Stat 15:101–117

    Article  MathSciNet  Google Scholar 

  • Hannig J, Lee T, Park C (2013) Metrics for SiZer map comparison. Stat 2:49–60

    Article  Google Scholar 

  • Holmström L (2010a) BSiZer. Wiley Interdiscip Rev Comput Stat 2:526–534

    Article  Google Scholar 

  • Holmströma L (2010b) Scale space methods. Wiley Interdiscip Rev Comput Stat 2:150–159

    Article  Google Scholar 

  • Holmströma L, Pasanena L (2016) Statistical scale space methods. Int Stat Rev. doi:10.1111/insr.12155

    Google Scholar 

  • James GM, Sugar CA (2003) Clustering for sparsely sampled functional data. J Am Stat Assoc 98:397–408

    Article  MathSciNet  MATH  Google Scholar 

  • Jang D, Oh H-S (2011) Enhancement of spatially adaptive smoothing splines via parameterization of smoothing parameters. Comput Stat Data Anal 55:1029–1040

    Article  MathSciNet  MATH  Google Scholar 

  • Jaques J, Preda C (2013) Functional data clustering: a survey. Adv Data Anal Classif 8:231–255

    Article  MathSciNet  Google Scholar 

  • Lee TCM (2004) Improved smoothing spline regression by combining estimates of different smoothness. Stat Probab Lett 67:133–140

    Article  MathSciNet  MATH  Google Scholar 

  • Lindeberg T (1994) Scale-space theory in computer vision. Kluwer, Boston

    Book  MATH  Google Scholar 

  • Morris JS, Carroll RJ (2006) Wavelet-based functional mixed models. J R Stat Soc Series B 68:179–199

    Article  MathSciNet  MATH  Google Scholar 

  • Pasanena L, Launonena I, Holmströma L (2013) A scale space multiresolution method for extraction of time series features. Stat 2:273–291

    Article  Google Scholar 

  • Park C, Hannig J, Kang KH (2009) Improved SiZer for time series. Stat Sin 19:1511–1530

    MathSciNet  MATH  Google Scholar 

  • Park C, Lee TC, Hannig J (2010) Multiscale exploratory analysis of regression quantiles using quantile SiZer. J Comput Graph Stat 19:497–513

    Article  MathSciNet  Google Scholar 

  • Pintore A, Speckman P, Holmes CC (2006) Spatially adaptive smoothing splines. Biometrika 93:113–125

    Article  MathSciNet  MATH  Google Scholar 

  • Ray S, Mallick B (2006) Functional clustering by Bayesian wavelet methods. J R Stat Soc Series B 68:305–332

    Article  MathSciNet  MATH  Google Scholar 

  • Sain SR (2002) Multivariate locally adaptive density estimation. Comput Stat Data Anal 39:165–186

    Article  MathSciNet  MATH  Google Scholar 

  • Sain SR, Scott DW (1996) On locally adaptive density estimation. J Am Stat Assoc 91:1525–1534

    Article  MathSciNet  MATH  Google Scholar 

  • Serban N, Wasserman L (2005) CATS: cluster analysis by transformation and smoothing. J Am Stat Assoc 100:990–999

    Article  MATH  Google Scholar 

  • Smith M, Kohn R (1996) Nonparametric regression using Bayesian variable selection. J Econ 75:317–344

    Article  MATH  Google Scholar 

  • Wahba G (1983) Bayesian ‘confidence intervals’ for the cross-validated smoothing spline. J R Stat Soc Series B 45:133–150

    MathSciNet  MATH  Google Scholar 

  • Wahba G (1990) Spline models for observational data. In: CBMS-NSF, regional conference series in applied mathematics. SIAM, Philadelphia

  • Wahba G (1995) Discussion of a paper by Donoho et al. J R Stat Soc Series B 57:360–361

    Google Scholar 

  • Wakefield J, Zhou C, Self S (2003) Modelling gene expression over time: curve clustering with informative prior distributions. In: Bernardo J, Bayarri M, Berger J, Dawid A, Heckerman D, Smith A, West M (eds) Bayesian statistics, vol 7. Oxford University Press, Oxford, pp 721–732

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (Nos. NRF-2015R1D1A1A01056854 and 20110030811).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Seok Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, D., Oh, HS. & Naveau, P. Identifying local smoothness for spatially inhomogeneous functions. Comput Stat 32, 1115–1138 (2017). https://doi.org/10.1007/s00180-016-0694-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-016-0694-y

Keywords

Navigation