Computational Statistics

, Volume 32, Issue 4, pp 1767–1775 | Cite as

Efficient simulation from a gamma distribution with small shape parameter

Short Note
  • 383 Downloads

Abstract

Simulating from a gamma distribution with small shape parameter is a challenging problem. Towards an efficient method, we obtain a limiting distribution for a suitably normalized gamma distribution when the shape parameter tends to zero. Then this limiting distribution provides insight to the construction of a new, simple, and highly efficient acceptance–rejection algorithm. The proposed method is fast and comparisons based on acceptance rates show that it is more efficient than existing acceptance–rejection methods.

Keywords

Acceptance rate Acceptance–rejection method Asymptotic distribution Exponential distribution R software 

References

  1. Abramowitz M, Stegun IA (1966) Handbook of mathematical functions, with formulas, graphs, and mathematical tables. Dover Publications Inc., New YorkMATHGoogle Scholar
  2. Ahrens JH, Dieter U (1974) Computer methods for sampling from gamma, beta, Poisson and binomial distributions. Computing (Arch. Elektron. Rechnen) 12(3):223–246MATHMathSciNetGoogle Scholar
  3. Best DJ (1983) A note on gamma variate generators with shape parameter less than unity. Computing 30(2):185–188CrossRefMATHMathSciNetGoogle Scholar
  4. Billingsley P (1995) Probability and measure, 3rd edn. Wiley, New YorkMATHGoogle Scholar
  5. Brown LD (1986) Fundamentals of statistical exponential families with applications in statistical decision theory. In: Institute of mathematical statistics. Lecture notes—monograph Series, vol 9. Institute of Mathematical Statistics, HaywardGoogle Scholar
  6. Devroye L (1986) Nonuniform random variate generation. Springer, New YorkCrossRefMATHGoogle Scholar
  7. Flury BD (1990) Acceptance-rejection sampling made easy. SIAM Rev 32(3):474–476CrossRefMATHMathSciNetGoogle Scholar
  8. Fraser DAS, Reid N, Wong A (1997) Simple and accurate inference for the mean of a gamma model. Can J Stat 25(1):91–99CrossRefMATHGoogle Scholar
  9. Gelman A (2006) Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal 1(3):515–533CrossRefMATHMathSciNetGoogle Scholar
  10. Givens GH, Hoeting JA (2005) Computational statistics. In: Wiley series in probability and statistics. Wiley, HobokenGoogle Scholar
  11. Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1, 2nd edn. In: Wiley series in probability and mathematical statistics: applied probability and statistics. Wiley, New YorkGoogle Scholar
  12. Kleiber C, Kotz S (2003) Statistical size distributions in economics and actuarial sciences. In: Wiley series in probability and statistics. Wiley, HobokenGoogle Scholar
  13. Kundu D, Gupta RD (2007) A convenient way of generating gamma random variables using generalized exponential distribution. Comput Stat Data Anal 51(6):2796–2802CrossRefMATHMathSciNetGoogle Scholar
  14. Lange K (1999) Numerical analysis for statisticians. Springer, New York (Statistics and Computing)MATHGoogle Scholar
  15. Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D (2012) The BUGS book. CRC Press/Chapman & Hall, Boca RatonMATHGoogle Scholar
  16. Marin J-M, Pudlo P, Robert CP, Ryder RJ (2012) Approximate Bayesian computational methods. Stat Comput 22(6):1167–1180CrossRefMATHMathSciNetGoogle Scholar
  17. Marsaglia G, Tsang WW (2000) A simple method for generating gamma variables. ACM Trans Math Softw 26(3):363–372CrossRefMATHMathSciNetGoogle Scholar
  18. Martin R, Liu C (2015) Marginal inferential models: prior-free probabilistic inference on interest parameters. J Am Stat Assoc 110:1621–1631CrossRefMATHMathSciNetGoogle Scholar
  19. R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  20. Tanizaki H (2008) A simple gamma random number generator for arbitrary shape parameters. Econ Bull 3:1–10Google Scholar
  21. Xi B, Tan KM, Liu C (2013) Logarithmic transformation based gamma random number generators. J Stat Softw 55(4):1–17CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of StatisticsPurdue UniversityWest LafayetteUSA
  2. 2.Department of StatisticsNorth Carolina State UniversityRaleighUSA

Personalised recommendations