Computational Statistics

, Volume 32, Issue 4, pp 1323–1338 | Cite as

A Monte Carlo evaluation of the performance of two new tests for symmetry

  • James S. Allison
  • Charl Pretorius
Original Paper


We propose two new tests for symmetry based on well-known characterisations of symmetric distributions. The performance of the new tests is evaluated and compared to that of other existing tests by means of a Monte Carlo study. All tests are carried out in a regression setup where we test whether the error distribution in a linear regression model is symmetric. It is found that the newly proposed tests perform favourably compared to the other tests.


Characterisation of symmetry Empirical characteristic function Goodness-of-fit 



The first author thanks the National Research Foundation of South Africa for financial support. The authors would also like to thank the referee and the associate editor for their constructive comments that led to an improvement of the paper.


  1. Ahsanullah M (1992) On some characteristic property of symmetric distributions. Pak J Stat 8(3):19–22MATHGoogle Scholar
  2. Aki S (1981) Asymptotic distribution of a Cramér–von Mises type statistic for testing symmetry when the center is estimated. Ann Inst Stat Math 33:1–14CrossRefMATHMathSciNetGoogle Scholar
  3. Alemayehu D, Giné E, de la Pen C (1993) Bootstrap goodness-of-fit tests based on the empirical characteristic function. In: Tarter ME, Lock MD (eds) Computer science and statistics, proceedings of the 25th symposium on the interface, pp 1–9Google Scholar
  4. Allison JS, Santana L (2015) On a data-dependent choice of the tuning parameter appearing in certain goodness-of-fit tests. J Stat Comput Simul 85(16):3276–3288CrossRefMathSciNetGoogle Scholar
  5. Baringhaus L, Henze N (1992) A characterization of and new consistent tests for symmetry. Commun Stat Theory Methods 21(6):1555–1566CrossRefMATHMathSciNetGoogle Scholar
  6. Bhattacharya P, Gastwirth J, Wright A (1982) Two modified Wilcoxon tests for symmetry about an unknown location parameter. Biometrika 69(2):377–382CrossRefMATHMathSciNetGoogle Scholar
  7. Boos D (1982) A test for symmetry associated with the Hodges–Lehmann estimator. J Am Stat Assoc 77:647–651CrossRefMATHGoogle Scholar
  8. Bougerol P, Picard N (1992) Stationarity of GARCH processes and some nonnegative time series. J Economet 52:115–127CrossRefMATHMathSciNetGoogle Scholar
  9. Cabilio P, Masaro J (1996) A simple test of symmetry about an unknown median. Can J Stat 24(3):349–361CrossRefMATHGoogle Scholar
  10. Csörgő S, Heathcote C (1982) Some results concerning symmetric distributions. Bull Aust Math Soc 25:327–335CrossRefMATHMathSciNetGoogle Scholar
  11. Csörgő S, Heathcote C (1987) Testing for symmetry. Biometrika 74:177–184CrossRefMATHMathSciNetGoogle Scholar
  12. Dette H, Kusi-Appiah S, Neumeyer N (2002) Testing symmetry in nonparametric regression models. J Nonparametr Stat 14:477–494CrossRefMATHMathSciNetGoogle Scholar
  13. Diks C, Tong H (1999) A test for symmetries of multivariate probability distributions. Biometrika 86(3):605–614CrossRefMATHMathSciNetGoogle Scholar
  14. Doksum K, Fenstad G, Aaberge R (1977) Plots and tests for symmetry. Biometrika 64(3):473–487CrossRefMATHMathSciNetGoogle Scholar
  15. Ekström M, Jammalamadaka SR (2007) An asymptotically distribution-free test of symmetry. J Stat Plan Inference 137(3):799–810CrossRefMATHMathSciNetGoogle Scholar
  16. Epps TW (1999) Limit behavior of the ICF test for normality under Gram–Charlier alternatives. Stat Probab Lett 42:175–184CrossRefMATHMathSciNetGoogle Scholar
  17. Feuerverger A, Mureika RA (1977) The empirical characteristic function and its applications. Ann Stat 5(1):88–97CrossRefMATHMathSciNetGoogle Scholar
  18. Henze N, Klar B, Meintanis SG (2003) Invariant tests for symmetry about an unspecified point based on the empirical characteristic function. J Multivar Anal 87(2):275–297CrossRefMATHMathSciNetGoogle Scholar
  19. Hettmansperger TP, McKean JW, Sheather SJ (2002) Finite sample performance of tests for symmetry of errors in a linear model. J Stat Comput Simul 72:863–879CrossRefMATHMathSciNetGoogle Scholar
  20. Hillebrand M, Müller CH (2006) On consistency of redescending M-kernel smoothers. Metrika 63:71–90CrossRefMATHMathSciNetGoogle Scholar
  21. Hollander M (1988) Testing for symmetry. In: Kotz S, Johnson NL (eds) Encyclopedia of statistical sciences, vol 9. Wiley, New-York, pp 211–216Google Scholar
  22. Hušková M, Meintanis SG (2012) Tests for symmetric error distribution in linear and nonparametric regression models. Commun Stat Simul Comput 41:833–851CrossRefMATHMathSciNetGoogle Scholar
  23. Jiménez Gamero MD (2014) On the empirical characteristic function process of the residuals in GARCH models and applications. TEST 23:409–432CrossRefMATHMathSciNetGoogle Scholar
  24. Klar B, Linder F, Meintanis SG (2012) Specification tests for the error distribution in GARCH models. Comput Stat Data Anal 56:3587–3598CrossRefMATHMathSciNetGoogle Scholar
  25. Koutrouvelis I (1985) Distribution-free procedures for location and symmetry inference problems based on the empirical characteristic function. Scand J Stat 12:257–269MATHMathSciNetGoogle Scholar
  26. Koziol J (1985) A note on testing symmetry with estimated parameters. Stat Probab Lett 3:227–230CrossRefMATHMathSciNetGoogle Scholar
  27. McWilliams TP (1990) A distribution-free test for asymmetry based on a runs statistic. J Am Stat Assoc 85(412):1130–1133CrossRefGoogle Scholar
  28. Meintanis SG, Ngatchou-Wandji J (2012) Recent tests for symmetry with multivariate and structured data: a review. In: Jiang J (ed) Non-parametric statistical methods and related topics: a Festschrift in honor of Professor PK Bhattacharya on the occasion of his 80th birthday. World Scientific, New JerseyGoogle Scholar
  29. Meintanis SG, Allison J, Santana L (2016) Goodness-of-fit tests for semiparametric and parametric hypotheses based on the probability weighted empirical characteristic function. Stat Pap. doi: 10.1007/s00362-016-0760-0
  30. Neuhaus G, Zhu LX (1998) Permutation tests for reflected symmetry. J Multiv Anal 67:129–153CrossRefMATHMathSciNetGoogle Scholar
  31. Neumeyer N, Dette H (2007) Testing for symmetric error distribution in nonparametric regression models. Stat Sin 17:775–795MATHMathSciNetGoogle Scholar
  32. Neumeyer N, Dette H, Nagel ER (2005) A note on testing symmetry of the error distribution in linear regression models. J Nonparametr Stat 17:697–715CrossRefMATHMathSciNetGoogle Scholar
  33. Newey WK (1988) Adaptive estimation of regression models via moment restrictions. J Econometr 38:301–339CrossRefMATHMathSciNetGoogle Scholar
  34. Ngatchou-Wandji J (2009) Testing for symmetry in multivariate distributions. Stat Methodol 6(3):223–336CrossRefMATHMathSciNetGoogle Scholar
  35. Ngatchou-Wandji J, Harel M (2013) A Cramér–von Mises test for symmetry of the error distribution in asymptotically stationary stochastic models. Stat Inference Stoch Process 16:207–236CrossRefMATHMathSciNetGoogle Scholar
  36. Nikitin YY, Ahsanullah M (2015) New \(U\)-empirical tests of symmetry based on extremal order statistics, and their efficiencies. In: Hallin M, Mason D, Pfeifer D, Steinebach J (eds) Mathematical statistics and limit theorems. Festschrift in Honour of Paul Deheuvels. Springer, New York, pp 231–248Google Scholar
  37. Schuster EF, Barker RC (1987) Using the bootstrap in testing symmetry versus asymmetry. Commun Stat Simul Comput 16(1):69–84CrossRefMATHMathSciNetGoogle Scholar
  38. Tenreiro C (2009) On the choice of the smoothing parameter for the BHEP goodness-of-fit test. Comput Stat Data Anal 53:1038–1053CrossRefMATHMathSciNetGoogle Scholar
  39. Trapletti A, Hornik K (2015) tseries: time series analysis and computational finance., R package version 0.10-34
  40. Zheng T, Gastwirth JL (2010) On bootstrap tests of symmetry about an unknown median. J Data Sci 8(3):413–427Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of StatisticsNorth-West UniversityPotchefstroomSouth Africa

Personalised recommendations