Ordered spatial sampling by means of the traveling salesman problem

Abstract

In recent years, spatial sampling has been the subject of a flourishing literature. Its use had become widespread due to the availability of topographical information about statistical units, especially in the environmental context. New algorithms enable us to take advantage of spatial locations directly. In this paper, we present a new way of using spatial information by using traditional sampling techniques as systematic sampling. By means of a famous optimization method, the traveling salesman problem, it is possible to order the statistical units in a way that preserves the spatial correlation. Next ordered sampling methods are applied on the statistical units. Therefore we can render spatial some non-spatial methods. An economic application on real data is presented and different spatial and non-spatial methods are tested. Results are compared in terms of variance estimation and spatial balance, in order to establish the possibility of spatializing traditional sampling methods and of implementing them on data of different nature, among which economic ones.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Arbia G (1993) The use of GIS in spatial statistical surveys. Int Stat Rev 61:339–359

    Article  Google Scholar 

  2. Bockenhauer H-J, Hromkovic J, Klasing R, Seibert S, Unger W (2000) An improved lower bound on the approximability of metric TSP and approximation algorithms for the TSP with sharpened triangle in3quality. In: Proceedings of 17th symposium on theoretical aspects of computer science, lecture notes on computer science 1770. Springer, Berlin, pp 382–394

  3. Breidt FJ, Chauvet G (2012) Penalized balanced sampling. Biometrika 99:945–958

  4. Brewer KRW, Hanif M (1983) Sampling with unequal probabilities. Spinger, New York

    Google Scholar 

  5. Chauvet G, Tillé Y (2006) A fast algorithm for balanced sampling. Comput Stat 21:53–61

    MathSciNet  Article  MATH  Google Scholar 

  6. Chauvet G (2012) On a characterization of ordered pivotal sampling. Bernoulli 18:1320–1340

    MathSciNet  Article  MATH  Google Scholar 

  7. Croes GA (1958) A method for solving traveling salesman problems. Oper Res 6:791–812

    MathSciNet  Article  Google Scholar 

  8. Dantzig GB, Fulkerson DR, Johnson SM (1954) Solution of a large scale traveling salesman problem. Oper Res 2:393–410

    MathSciNet  Google Scholar 

  9. Deville J-C, Grosbras J-M, Roth N (1988) Efficient sampling algorithms and balanced sample. In: Payne R, Green P (eds) COMPSTAT, proceeding in computational statistics. Physica, Heidelberg, pp 255–266

    Google Scholar 

  10. Deville J-C (1993) Estimation de la variance pour les enquêtes en deux phases. Manuscript, INSEE, Paris

  11. Deville J-C (1998) Une nouvelle (encore une!) méthode de tirage à probabilités inégales. Tech. rept. 9804. Méthodologie Statistique, INSEE

  12. Deville J-C, Tillé Y (1998) Unequal probability sampling without replacement through a splitting method. Biometrika 85:89–101

    MathSciNet  Article  MATH  Google Scholar 

  13. Deville J-C, Tillé Y (2004) Efficient balanced sampling: the cube method. Biometrika 91:893–912

    MathSciNet  Article  MATH  Google Scholar 

  14. Dickson MM, Benedetti R, Giuliani D, Espa G (2014) The use of spatial sampling designs in business surveys. Open J Stat 4:345–354

    Article  Google Scholar 

  15. Grafström A, Lundström NLP, Schelin L (2011) Spatially balanced sampling through the pivotal method. Biometrics 68:514–520

    MathSciNet  Article  MATH  Google Scholar 

  16. Grafström A (2012) Spatially correlated Poisson sampling. J Stat Plan Inference 142:139–147

    MathSciNet  Article  MATH  Google Scholar 

  17. Grafström A, Tillé Y (2013) Doubly balanced spatial sampling with spreading and restitution of auxiliary totals. Environmetrics 24:120–131

    MathSciNet  Article  Google Scholar 

  18. Grafström A (2014) BalancedSampling: balanced and spatially balanced sampling. R package version 1.4, http://www.antongrafstrom.se/balancedsampling

  19. Grötschel M, Holland O (1991) Solution of large-scale traveling salesman problems. Math Program 5:141–202

    Article  MATH  Google Scholar 

  20. Hahsler M, Hornik K (2007) TSP-infrastructure for the traveling salesperson problem. J Stat Softw 23:1–21

    Article  Google Scholar 

  21. Hamilton WR (1858) Account of the icosian calculus. Proc R Irish Acad 6:415–416

    Google Scholar 

  22. Hoffman A, Wolfe P (1985) History. In: Lawler EL, Lenstra JK, Kan AHGR, Shmoys DB (eds) The traveling salesman problem: a guided tour of combinatorial optimization. Wiley, Chichester, pp 1–16

    Google Scholar 

  23. Horvitz DG, Thompson DJ (1952) A generalization of sampling without replacement from a finite universe. J Am Stat Assoc 47:663–685

    MathSciNet  Article  MATH  Google Scholar 

  24. Karp RM (1979) A patching algorithm for the nonsymmetric traveling-salesman problem. SIAM J Comput 8:561–573

    MathSciNet  Article  MATH  Google Scholar 

  25. Kirkman TP (1856) On the representation of polyhedra. Philos Trans R Soc Ser A 146:413–418

    Article  Google Scholar 

  26. Land AH, Doig AG (1960) An automatic method of solving discrete programming problems. Econometrica 28:497–520

    MathSciNet  Article  MATH  Google Scholar 

  27. Lawler EL, Lenstra JK, Kan AHGR, Shmoys DB (eds) (1985) The traveling salesman problem: a guided tour of combinatorial optimization. Wiley, Chichester

    Google Scholar 

  28. Lenstra J, Kan AR (1975) Some simple applications of the traveling salesman problem. Oper Res Q 26:717–733

    Article  MATH  Google Scholar 

  29. Lin S (1965) Computer solutions of the traveling salesman problem. Bell Syst Tech J 44:2245–2269

    MathSciNet  Article  MATH  Google Scholar 

  30. Madow WG (1949) On the theory of systematic sampling. Ann Math Stat 20:333–354

    MathSciNet  Article  MATH  Google Scholar 

  31. Mark DM (1990) Neighbor-based properties of some orderings of two-dimensional space. Geogr Anal 2:145–157

    Google Scholar 

  32. Matai R, Singh SP, Mittal ML (2010) Traveling salesman problem: an overview of applications, formulations, and solution approaches. In: Davendra D (ed) Traveling salesman problem, theory and applications. InTech, pp 1–24

  33. Menger K (1932) Das botenproblem. Ergeb Eines Math Kolloqu 2:11–12

    Google Scholar 

  34. Padberg M, Rinaldi G (1991) A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. Siam Rev 33:60–100

    MathSciNet  Article  MATH  Google Scholar 

  35. Papadimitriou CH (1977) Euclidean TSP is NP-complete. Theor Comput Sci 4:237–244

    MathSciNet  Article  MATH  Google Scholar 

  36. Punnen AP (2002) The traveling salesman problem: applications, formulations and variations. In: Gutin G, Punnen AP (eds) The traveling salesman problem and its variations. Kluwer, Boston, pp 1–28

    Google Scholar 

  37. Rosenkrantz DJ, Stearns RE, Lewis PM II (1977) An analysis of several heuristics for the traveling salesman problem. SIAM J Comput 6:563–581

    MathSciNet  Article  MATH  Google Scholar 

  38. Stevens DL Jr, Olsen AR (2004) Spatially balanced sampling of natural resources. J Am Stat Assoc 99:262–278

    MathSciNet  Article  MATH  Google Scholar 

  39. Thionet P (1953) La théorie des sondages. Institut National de la Statistique et des Études Économiques, Études théoriques, Impremerie nationale, Paris

  40. Tillé Y, Matei A (2005) The R package sampling, the comprehensive R archive network, http://cran.r-project.org/, Manual of the Contributed Packages

  41. Tillé Y (2006) Sampling algorithms. Spinger, New York

    Google Scholar 

  42. Volgenant A (1990) Symmetric traveling salesman problems. Eur J Oper Res 49:153–154

    MathSciNet  Article  Google Scholar 

  43. Wang J-F, Stein A, Gao B-B, Ge Y (2012) A review of spatial sampling. Spat Stat 2:1–14

    Article  Google Scholar 

  44. Yates F (1949) Sampling methods for census and surveys. Griffin, London

    Google Scholar 

Download references

Acknowledgments

The authors thank two anonymous reviewers for constructive comments that helped to improve the quality of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria Michela Dickson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dickson, M.M., Tillé, Y. Ordered spatial sampling by means of the traveling salesman problem. Comput Stat 31, 1359–1372 (2016). https://doi.org/10.1007/s00180-015-0635-1

Download citation

Keywords

  • Sampling methods
  • Spatial balance
  • TSP
  • Variance estimation