Skip to main content

Advertisement

Log in

Robust likelihood inference for multivariate correlated count data

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

A parametric robust approach for analyzing correlated count data is introduced. This method enables one to construct an asymptotically valid likelihood for the regression parameter when knowledge about the joint distribution for data is scarce or not available. We use simulations and real data analysis to demonstrate the merit of the proposed robust likelihood method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfo M, Trovato G (2004) Semiparametric mixture models for multivariate count data, with application. Econom J 7:426–454

    Article  MathSciNet  MATH  Google Scholar 

  • Bartlett MS (1953) Approximate confidence intervals. Biometrika 40:12–19

    Article  MathSciNet  MATH  Google Scholar 

  • Berkhout P, Plug E (2004) A bivariate Poisson count data model using conditional probabilities. Stat Neerl 58:349–364

    Article  MathSciNet  MATH  Google Scholar 

  • Cameron AC, Li T, Trivedi K, Zimmer DM (2004) Modelling the differences in counted outcomes using bivariate copula models with application to mismeasured counts. Econom J 7:566–584

    Article  MathSciNet  MATH  Google Scholar 

  • Cox DR, Hinkley DV (1986) Theoretical statistics. Chapman and Hall, New York

    MATH  Google Scholar 

  • Cox DR, Reid N (1987) Parameter orthogonality and approximate conditional inference. J R Stat Soc B 49:1–39

    MathSciNet  MATH  Google Scholar 

  • Diggle PJ, Liang KY, Zeger SL (1994) Analysis of longitudinal data. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Fiocco M, Putter H, Van Houwelingen JC (2009) A new serially correlated gamma-frailty process for longitudinal count data. Biostatistics 10:245–257

    Article  Google Scholar 

  • Gurmu S, Elder J (2007) A simple bivariate count data regression model. Econ Bull 3:1–10

    MATH  Google Scholar 

  • Hadgu A, Koch G (1999) Application of generalized estimating equations to a dental randomized clinical trial. J Biopharm Stat 9:161–178

    Article  MATH  Google Scholar 

  • Hauck WW, Donner A (1977) Wald’s test as applied to hypotheses in logit analysis. J Am Stat Assoc 72:851–853

    MathSciNet  MATH  Google Scholar 

  • Huber PJ (1981) Robust statistics. Wiley, New York

    Book  MATH  Google Scholar 

  • Kauermann G, Carroll RJ (2001) A note on the efficiency of sandwich covariance matrix estimation. J Am Stat Assoc 96:1387–1396

    Article  MathSciNet  MATH  Google Scholar 

  • Liang KY, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22

    Article  MathSciNet  MATH  Google Scholar 

  • Maronna R, Martin D, Yohai V (2006) Robust statistics: theory and methods. Wiley, West Sussex

    Book  MATH  Google Scholar 

  • McCullagh P (1983) Quasi-likelihood functions. Ann Stat 11:59–67

    Article  MathSciNet  MATH  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Royall RM (2000) On the probability of observing misleading statistical evidence (with discussion). J Am Stat Assoc 95:760–780

    Article  MathSciNet  MATH  Google Scholar 

  • Royall RM, Tsou TS (2003) Interpreting statistical evidence using imperfect models: robust adjusted likelihood functions. J R Stat Soc Ser B 65:391–404

    Article  MathSciNet  MATH  Google Scholar 

  • Solis-Trapala IL, Farewell VT (2005) Regression analysis of overdispersed correlated count data with subject specific covariates. Stat Med 24:2557–2575

    Article  MathSciNet  Google Scholar 

  • Stafford JE (1996) A robust adjustment of the profile likelihood. Ann Stat 24:336–352

    Article  MathSciNet  MATH  Google Scholar 

  • Thall PF, Vail SC (1990) Some covariance models for longitudinal count data with overdispersion. Biometrics 46:57–671

    Article  MathSciNet  MATH  Google Scholar 

  • Turesky S, Gilmore ND, Glickman J (1970) Reduced plaque formation by the chloromethyl analogue of Victamine. J Periodontol 41:41

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  MATH  Google Scholar 

  • White H (1982) Maximum likelihood estimation of misspecified models. Econometrica 50:1–25

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by Grant NSC 102-2118-M-008-001-MY2 of National Science Council, Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-Shan Tsou.

Appendix: The I and V terms

Appendix: The I and V terms

The two matrices I and V required to calculate the amendment that robustifies the naïve likelihood function are simply the Fisher information matrix and the variance matrix of the score functions. Their derivation is straightforward and routine. Following the definitions, one can show that the matrix I consists of entries

$$\begin{aligned} I(\beta _r ,\beta _r )= & {} \mathop {\lim }\limits _{m\rightarrow \infty } \frac{1}{m}\sum _{i=1}^m {\left[ {\sum _{j=1}^{n_i} {\frac{1}{\mu _{ij}}{g}'(\eta _{ij} )^{2}x_{ij,r}^2 -\frac{{{\phi }}}{1+{{\phi }} \mu _{i+} }\left\{ {\sum _{j=1}^{n_i} {{g}'(\eta _{ij} )x_{ij,r}}} \right\} ^{2}}} \right] } ,\\&r=0,\ldots ,p-1, \end{aligned}$$

\(r,s=0,\ldots ,p-1,\) and

The components of the matrix V are

$$\begin{aligned} V(\beta _r ,\beta _r )= & {} \mathop {\lim }\limits _{m\rightarrow \infty } \frac{1}{m}\sum _{i=1}^m {\left[ {\sum _{j=1}^{n_i} {Var\left( {\frac{Y_{ij}}{\mu _{ij}}-\frac{{{\phi }} S_i }{1+{{\phi }} \mu _{i+}}} \right) }} \right. } \left\{ {{g}'(\eta _{ij} )x_{ij,r}} \right\} ^{2} \\&\quad +\,2\mathop {\mathop {\sum }\limits _{k,l}}\limits _{{k<l}} \left\{ {\frac{Cov(Y_{ik} ,Y_{il} )}{\mu _{ik} \mu _{il}}-Cov\left( {\frac{Y_{ik}}{\mu _{ik}}+\frac{Y_{il}}{\mu _{il}},\frac{{{\phi }} Y_{i+}}{(1+{{\phi }} \mu _{i+} )}} \right) } \right. \\&\quad \qquad \qquad \quad \left. \left. {+Var\left( {\frac{{{\phi }} Y_{i+}}{1+{{\phi }} \mu _{i+} }} \right) } \right\} {g}'(\eta _{ik} ){g}'(\eta _{il} )x_{ik,r} x_{il,r} \right] ,\\&r=0,\ldots ,p-1 \\ V(\beta _r ,\beta _s )= & {} \mathop {\lim }\limits _{m\rightarrow \infty } \frac{1}{m}\sum _{i=1}^m {\left[ {\sum _{j=1}^{n_i} {Var\left( {\frac{Y_{ij}}{\mu _{ij}}-\frac{{{\phi }} S_i }{1+{{\phi }} \mu _{i+}}} \right) }} \right. } {g}'(\eta _{ij} )^{2}x_{ij,r} x_{ij,s} \\&\quad +\mathop {\mathop {\sum }\limits _{k,l}}\limits _{{k<l}} \left\{ {\frac{Cov(Y_{ik} ,Y_{il} )}{\mu _{ik} \mu _{il} }-Cov\left( {\frac{Y_{ik}}{\mu _{ik}}+\frac{Y_{il}}{\mu _{il} },\frac{{{\phi }} Y_{i+}}{(1+{{\phi }} \mu _{i+} )}} \right) } \right. \\&\quad \qquad \qquad \left. {\left. {+Var\left( {\frac{{{\phi }} Y_{i+}}{1+{{\phi }} \mu _{i+} }} \right) } \right\} {g}'(\eta _{ik} ){g}'(\eta _{il} )\left( {x_{ik,r} x_{il,s} +x_{il,r} x_{ik,s}} \right) } \right] ,\\&r\ne s=0,\ldots ,p-1 . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsou, TS. Robust likelihood inference for multivariate correlated count data. Comput Stat 31, 845–857 (2016). https://doi.org/10.1007/s00180-015-0589-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-015-0589-3

Keywords

Navigation