Computational Statistics

, Volume 30, Issue 3, pp 745–766 | Cite as

Modelling spatio-temporal variability of temperature

  • Xiaofeng Cao
  • Ostap Okhrin
  • Martin Odening
  • Matthias RitterEmail author
Original Paper


Forecasting temperature in time and space is an important precondition for both, the design of weather derivatives and the assessment of the hedging effectiveness of index based weather insurance. In this article, we show how this task can be accomplished by means of Kriging techniques. Moreover, we compare Kriging with a dynamic semiparametric factor model (DSFM) that has been recently developed for the analysis of high dimensional financial data. We apply both methods to comprehensive temperature data covering a large area of China and assess their performance in terms of predicting a temperature index at an unobserved location. The results show that the DSFM performs worse than standard Kriging techniques. Moreover, we show how geographic basis risk inherent to weather derivatives can be mitigated by regional diversification.


Semiparametric model Factor model Kriging Weather insurance Geographic basis risk 

JEL Classification

C14 C53 G32 



Financial support from the German Research Foundation via CRC 649 “Economic Risk” is gratefully acknowledged.


  1. Balzer N, Hess U (2010) Climate change and weather risk management: evidence from index-based insurance schemes in China and Ethiopia. In: World Food Programme, Omamo SW, Gentilini U, Sandström S (eds) Revolution: from food aid to food assistance—innovations in overcoming hunger, pp 103–124Google Scholar
  2. Barnett BJ, Mahul O (2007) Weather index insurance for agricultural and rural areas in lower-income countries. Am J Agric Econ 89(5):1241–1247. doi: 10.1111/j.1467-8276.2007.01091.x CrossRefGoogle Scholar
  3. Benth FE, Šaltytė-Benth J (2005) Stochastic modelling of temperature variations with a view towards weather derivatives. Appl Math Finance 12(1):53–85. doi: 10.1155/2011/576791 zbMATHCrossRefGoogle Scholar
  4. Campbell SD, Diebold FX (2005) Weather forecasting for weather derivatives. J Am Stat Assoc 100(469):6–16. doi: 10.1198/016214504000001051 zbMATHMathSciNetCrossRefGoogle Scholar
  5. Caruso C, Quarta F (1998) Interpolation methods comparison. Comput Math Appl 35(12):109–126. doi: 10.1016/S0898-1221(98)00101-1 zbMATHMathSciNetCrossRefGoogle Scholar
  6. Choroś-Tomczyk B, Härdle WK, Okhrin O (2013) CDO surfaces dynamics. SFB 649 discussion paper 2013-032, Humboldt Universität zu BerlinGoogle Scholar
  7. Cressie NAC (1993) Statistics for spatial data. Revised edition. Wiley series in probability and mathematical statics. Wiley, HobokenGoogle Scholar
  8. Cressie NAC, Wikle CK (2011) Statistics for spatio-temporal data. Wiley series in probability and mathematical statics. Wiley, HobokenGoogle Scholar
  9. Deng X, Barnett BJ, Vedenov DV, West JW (2007) Hedging dairy production losses using weather-based index insurance. Agric Econ 36(2):271–280. doi: 10.1111/j.1574-0862.2007.00204.x CrossRefGoogle Scholar
  10. Isaaks Edward H, Mohan Srivastava R (1989) An introduction to applied geostatistics. Oxford University Press, OxfordGoogle Scholar
  11. Fengler MR, Härdle WK, Mammen E (2007) A semiparametric factor model for implied volatility surface dynamics. J Financ Econom 5(2):189–218. doi: 10.1093/jjfinec/nbm005 CrossRefGoogle Scholar
  12. Gething PW, Atkinson PM, Noor AM, Gikandi PW, Hay SI, Nixon MS (2007) A local space–time Kriging approach applied to a national outpatient malaria data set. Comput Geosci 33(10):1337–1350. doi: 10.1016/j.cageo.2007.05.006 CrossRefGoogle Scholar
  13. Giacomini E, Härdle WK, Krätschmer V (2009) Dynamic semiparametric factor models in risk neutral density estimation. AStA 93(4):387–402. doi: 10.1007/s10182-009-0115-4 MathSciNetCrossRefGoogle Scholar
  14. Härdle WK, López Cabrera B (2011) Localising temperature risk. SFB 649 discussion paper 2011-001, Humboldt-Universität zu BerlinGoogle Scholar
  15. Hellmuth ME, Osgood DE, Hess U, Moorhead A, Bhojwani H (eds) (2009) Index insurance and climate risk: Prospects for development and disaster management. Climate and Society No. 2. International Research Institute for Climate and Society (IRI), Columbia University, New YorkGoogle Scholar
  16. Holdaway MR (1996) Spatial modeling and interpolation of monthly temperature using kriging. Clim Res 6(3):215–225CrossRefGoogle Scholar
  17. Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metall Min Soc South AfrGoogle Scholar
  18. Matheron G (1965) Les variables régionalisées et leur estimation. Dissertation, Masson, ParisGoogle Scholar
  19. Miranda M, Vedenov DV (2001) Innovations in agricultural and natural disaster insurance. Am J Agric Econ 83(3):650–655CrossRefGoogle Scholar
  20. Mußhoff O, Odening M, Xu W (2011) Management of climate risks in agriculture—will weather derivatives permeate? Appl Econ 43(9):1067–1077. doi: 10.1080/00036840802600210 CrossRefGoogle Scholar
  21. Okhrin O, Odening M, Xu W (2012) Systemic weather risk and crop insurance: the case of China. J Risk Insur 80(2):351–372. doi: 10.1111/j.1539-6975.2012.01476.x CrossRefGoogle Scholar
  22. Olea RA (ed) (1999) Geostatistics for engineers and earth scientists. Kluwer, BostonGoogle Scholar
  23. Park BU, Mammen E, Härdle WK, Borak S (2009) Time series modelling with semiparametric factor dynamics. J Am Stat Assoc 104(485):284–298. doi: 10.1198/jasa.2009.0105 CrossRefGoogle Scholar
  24. Paulson ND, Hart CE (2006) A spatial approach to addressing weather derivative basis risk: a drought insurance example. Annual meeting of the American Agricultural Economics Association, California.
  25. Paulson ND, Hart CE, Hayes DJ (2010) A spatial Bayesian approach to weather derivatives. Agric Finance Rev 70(1):79–96. doi: 10.1108/00021461011042657 CrossRefGoogle Scholar
  26. People’s Bank of China (2013) China financial stability report 2013. Chapter 4: insurance sector. China Financial Publishing HouseGoogle Scholar
  27. Ritter M, Mußhoff O, Odening M (2014) Minimizing geographical basis risk of weather derivatives using a multi-site rainfall model. Comput Econ 44(1):67–86. doi: 10.1007/s10614-013-9410-y CrossRefGoogle Scholar
  28. Šaltytė-Benth J, Benth FE (2012) A critical view on temperature modeling for application in weather derivatives markets. Energy Econ 34(2):592–602. doi: 10.1016/j.eneco.2011.09.012 CrossRefGoogle Scholar
  29. Skees JR, Barnett BJ, Murphy AG (2008) Creating insurance markets for natural disaster risk in lower income countries: the potential role for securitization. Agric Finance Rev 68(1):151–167. doi: 10.1108/00214660880001224 CrossRefGoogle Scholar
  30. Sluiter R (2009) Interpolation methods for climate data. KNMI IR 2009-04. Royal Netherlands Meteorological Institute, De BiltGoogle Scholar
  31. Song S, Härdle WH, Ritov Y (2010) High dimensional nonstationary time series modelling with generalized dynamic semiparametric factor model. SFB 649 discussion paper 2010-039, Humboldt-Universität zu BerlinGoogle Scholar
  32. Song S, Härdle WH, Ritov Y (2013) Generalized dynamic semiparametric factor models for high dimensional nonstationary time series. Econom J. doi: 10.1111/ectj.12024
  33. Stahl K, Moore RD, Floyer JA, Asplin MG, McKendry IG (2006) Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agric For Meteorol 139(3–4):224–236. doi: 10.1016/j.agrformet.2006.07.004 CrossRefGoogle Scholar
  34. Stroud JR, Mueller P, Sanso B (2001) Dynamic models for spatiotemporal data. J R Stat Soc B Stat Methodol 63(4):673–689. doi: 10.1111/1467-9868.00305 zbMATHCrossRefGoogle Scholar
  35. Woodard JD, Garcia P (2008) Basis risk and weather hedging effectiveness. Agric Finance Rev 68(1):99–117. doi: 10.1108/00021461211277295 CrossRefGoogle Scholar
  36. World Bank (2005) Managing agricultural production risk: innovations in developing countries. Washington, DC.
  37. Ye Y, Yang S, Huang Y, Liu F (2007) Development and prospect of wheat production in Henan Province. Chin Agric Sci Bull 23(1):199–203Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xiaofeng Cao
    • 1
  • Ostap Okhrin
    • 2
    • 3
  • Martin Odening
    • 1
  • Matthias Ritter
    • 1
    Email author
  1. 1.Department of Agricultural EconomicsHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Chair of Statistics and Econometrics, Transportation FacultyTechnische Universität DresdenDresdenGermany
  3. 3.SFB 649, School of Business and EconomicsHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations