Skip to main content
Log in

A new R package for actuarial survival models

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

We develop a new R package that computes the probability density function, the hazard rate function, the integrated hazard rate function, and the quantile function for forty four survival models commonly used in actuarial science. A real data application of the package is illustrated. It is hoped that this package could be useful for actuarial scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bain LJ (1974) Analysis for the linear failure-rate life-testing distribution. Technometrics 16:551–559

    Article  MathSciNet  MATH  Google Scholar 

  • Beard RE (1959) Note on some mathematical mortality models. In: Wolstenholme GEW, O’Connor M (eds) The lifespan of animals. Little Brown, Boston, pp 302–311

    Google Scholar 

  • Bebbington M, Goddard M, Lai CD, Zitikis R (2009) Identifying health inequalities between Maori and non-Maori using mortality tables. Kotuitui N Z J Soc Sci 4:103–114

    Google Scholar 

  • Bebbington M, Lai CD, Zitikis R (2007) A flexible Weibull extension. Reliab Eng Syst Saf 92:719–726

    Article  Google Scholar 

  • Beirlant J, Goegebeur Y, Verlaak R, Vynckier P (1998) Burr regression and portfolio segmentation. Insur Math Econ 23:231–250

    Article  MATH  Google Scholar 

  • Borovkov KA, Dickson DCM (2008) On the ruin time distribution for a Sparre Andersen process with exponential claim sizes. Insur Math Econ 42:1104–1108

    Article  MathSciNet  MATH  Google Scholar 

  • Cerezo EC, Bielsa MMC, Ramon MC (2011) Actuarial theory of the losses measurement by exposure to credit risk: an application to the Colombian market. Academia-Revista Latinoamericana de Administracion 47:112–125

    Google Scholar 

  • Chen N, Zhao LQ, Luo CD (2009) A truncated distribution commonly-used in non-life insurance. In: Zhu K, Zhang H (eds) Recent advance in statistics application and related areas, pp 230–234

  • Chen Z (2000) A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function. Stat Prob Lett 49:155–161

    Article  MATH  Google Scholar 

  • Choquet R, Viallefont A, Rouan L, Gaanoun K, Gaillard JM (2011) A semi-Markov model to assess reliably survival patterns from birth to death in free-ranging populations. Methods Ecol Evol 2:383–389

    Article  Google Scholar 

  • Choudhury A (2005) A simple derivation of moments of the exponentiated Weibull distribution. Metrika 62:17–22

    Article  MathSciNet  MATH  Google Scholar 

  • de Moivre A (1738) The doctrine of chances. ISBN 0821821032

  • Fiocco M, Putter H, van Houwelingen JC (2005) Reduced rank proportional hazards model for competing risks. Biostatistics 6:465–478

    Article  MATH  Google Scholar 

  • Gauss CF (1809) Theoria motvs corporvm coelestivm in sectionibvs conicis Solem ambientivm (in Latin)

  • Gompertz B (1825) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond 115:513–583

    Article  Google Scholar 

  • Gumbel EJ (1954) Statistical theory of extreme values and some practical applications. Applied Mathematics Series, vol 33, US Department of Commerce, National Bureau of Standards

  • Gupta RD, Kundu D (1999) Generalized exponential distributions. Aust N Z J Stat 41:173–188

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta RD, Kundu D (2001) Exponentiated exponential family: an alternative to gamma and Weibull distributions. Biometric J 43:117–130

    Article  MathSciNet  MATH  Google Scholar 

  • Haberman S, Renshaw A (2011) A comparative study of parametric mortality projection models. Insur Math Econ 48:35–55

    Article  MathSciNet  Google Scholar 

  • Hawkes K, Smith KR, Blevins JK (2012) Human actuarial aging increases faster when background death rates are lower: a consequence of differential heterogeneity? Evolution 66:103–114

    Article  Google Scholar 

  • Hernandez-Bastida A, Fernandez-Sanchez MP, Gomez-Deniz E (2011) Collective risk model: Poisson-Lindley and exponential distributions for Bayes premium and operational risk. J Stat Comput Simul 81:759–778

    Article  MathSciNet  MATH  Google Scholar 

  • Hjorth U (1980) Reliability distribution with increasing, decreasing, constant and bathtub-shaped failure rates. Technometrics 17:99–107

    Article  MathSciNet  Google Scholar 

  • Hocht S, Zagst R (2010) Pricing distressed CDOs with stochastic recovery. Rev Deriv Res 13:219–244

    Article  Google Scholar 

  • Jang J, Fu GY (2008) Transform approach for operational risk modeling: value-at-risk and tail conditional expectation. J Oper Risk 3:45–61

    Google Scholar 

  • Jones BL, Mereu JA (2002) A critique of fractional age assumptions. Insur Math Econ 30:363–370

    Article  MathSciNet  MATH  Google Scholar 

  • Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  MathSciNet  MATH  Google Scholar 

  • Kleiber C, Kotz S (2003) Statistical size distributions in economics and actuarial sciences. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Klutke GA, Kiessler PC, Wortman MA (2003) A critical look at the bathtub curve. IEEE Trans Reliab 52:125–129

    Article  Google Scholar 

  • Kumaraswamy P (1980) Generalized probability density function for double-bounded random processes. J Hydrol 46:79–88

    Article  Google Scholar 

  • Kundu D, Raqab M (2005) Generalized Rayleigh distribution: different methods of estimations. Comput Stat Data Anal 49:187–200

    Article  MathSciNet  MATH  Google Scholar 

  • Lai CD, Xie M, Murthy DNP (2003) Modified Weibull distribution. IEEE Trans Reliab 52:33–37

    Article  Google Scholar 

  • Lan Y, Leemis LM (2008) The logistic-exponential survival distribution. Nav Res Logist 55:252–264

    Article  MathSciNet  MATH  Google Scholar 

  • Landers TL, Martin K, English JR (1994) Decision modeling for thermal stress screening of commercial electronics. Microelectron Reliab 34:1643–1656

    Article  Google Scholar 

  • Lenart A (2012) The moments of the Gompertz distribution and maximum likelihood estimation of its parameters. Scand Actuar J. doi:10.1080/03461238.2012.687697

  • Makeham WM (1859) On the law of mortality and the construction of annuity tables. J Inst Actuar 8:301–310

    Google Scholar 

  • Marshall AW, Olkin I (1997) A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 84:641–652

    Article  MathSciNet  MATH  Google Scholar 

  • Matis TI, Jayaraman R, Rangan A (2008) Optimal price and pro rata decisions for combined warranty policies with different repair options. IIE Trans 40:984–991

    Article  Google Scholar 

  • Mierzejewski F (2011) A model of equilibrium in markets of cash balances. IMA J Manag Math 22: 253–270

    Google Scholar 

  • Mudholkar GS, Srivastava DK (1993) Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans Reliab 42:299–302

    Article  MATH  Google Scholar 

  • Mudholkar GS, Srivastava DK, Freimer M (1995) The exponentiated Weibull family: a reanalysis of the bus-motor-failure data. Technometrics 37:436–445

    Article  MATH  Google Scholar 

  • Nadarajah S (2009) Bathtub-shaped failure rate functions. Qual Quant 43:855–863

    Article  Google Scholar 

  • Nadarajah S, Gupta AK (2005) On the moments of the exponentiated Weibull distribution. Commun Stat Theory Methods 34:253–256

    MathSciNet  MATH  Google Scholar 

  • Nadarajah S, Haghighi F (2011) An extension of the exponential distribution. Statistics 45:543–558

    Article  MathSciNet  MATH  Google Scholar 

  • Nikulin M, Haghighi F (2006) A chi-squared test for the generalized power Weibull family for the head-and-neck cancer censored data. J Math Sci 133:1333–1341

    Article  MathSciNet  Google Scholar 

  • Pareto V (1964) Cours d’économie politique. Nouvelle édition par G-H Bousquet et G Busino. Librairie Droz, Geneva, pp 299–345

  • Perks W (1932) On some experiments in the graduation of mortality statistics. J Inst Actuar 63:12–40

    Google Scholar 

  • Pham H (2002) A Vtub-shaped hazard rate function with applications to system safety. Int J Reliab Appl 3:1–16

    Google Scholar 

  • Pham H (2011) Modeling US mortality and risk-cost optimization on life expectancy. IEEE Trans Reliab 60:125–133

    Article  MathSciNet  Google Scholar 

  • Ping H, Xiang W (2009) Discrete life insurance actuarial models with variable interest rate based on de Moivre’s and Makeham’s law of mortality. In: Luo Q, Wang B (eds) Proceedings of the 2009 international Asia symposium on intelligent interaction and affective computing, pp 160–163

  • Prentice RL (1975) Discrimination among some parametric models. Biometrika 62:607–614

    Article  MathSciNet  MATH  Google Scholar 

  • R Development Core Team (2011) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Raqab MZ, Kundu D (2006) Burr type X distribution: revisited. J Probab Stat Sci 4:179–193

    MathSciNet  Google Scholar 

  • Richards SJ (2008) Applying survival models to pensioner mortality data. Br Actuar J 14:257–303

    Article  Google Scholar 

  • Richards SJ (2012) A handbook of parametric survival models for actuarial use. Scand Actuar J. doi:10.1080/03461238.2010.506688

  • Sarabia JM, Castillo E (2005) About a class of max-stable families with applications to income distributions. Metron LXIII:505–527

    Google Scholar 

  • Sarhan AM, Kundu D (2009) Generalized linear failure rate distribution. Commun Stat Theory Methods 38:642–660

    Article  MathSciNet  MATH  Google Scholar 

  • Schabe H (1994) Constructing lifetime distributions with bathtub shaped failure rate from DFR distributions. Microelectron Reliab 34:1501–1508

    Article  Google Scholar 

  • Schulzer M, Mak E, Calne DB (1992) The antiparkinson efficacy of deprenyl derives from transient improvement that is likely to be symptomatic. Ann Neurol 32:795–798

    Article  Google Scholar 

  • Shirke DT, Kumbhar RR, Kundu D (2005) Tolerance intervals for exponentiated scale family of distributions. J Appl Stat 32:1067–1074

    Article  MathSciNet  MATH  Google Scholar 

  • Stacy EW (1962) A generalization of the gamma distribution. Ann Math Stat 33:1187–1192

    Article  MathSciNet  MATH  Google Scholar 

  • Thampi KK, Jacob MJ (2008) Moments of the time of ruin in a renewal risk model with discounted penalty. J Risk Financ 9:173–187

    Article  Google Scholar 

  • Topp CW, Leone FC (1955) A family of \(J\)-shaped frequency functions. J Am Stat Assoc 50:209–219

    Article  MathSciNet  MATH  Google Scholar 

  • van Dorp JR, Kotz S (2006) Modeling income distributions using elevated distributions on a bounded domain. In: Pleguezeoulo RH, Cespedes JC, Velasco JMH (eds) Distribution models theory, pp 1–25

  • Verhoef C (2002) Quantitative IT portfolio management. Sci Comput Program 45:1–96

    Article  MATH  Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    MATH  Google Scholar 

  • Xie M, Lai CD (1995) Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliab Eng Syst Saf 52:87–93

    Article  Google Scholar 

  • Xie M, Tang Y, Goh TN (2002) A modified Weibull extension with bathtub-shaped failure rate function. Reliab Eng Syst Saf 76:279–285

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Editor-in-Chief, the Associate Editor and the two referees for careful reading and for comments which greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nadarajah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadarajah, S., Bakar, S.A.A. A new R package for actuarial survival models. Comput Stat 28, 2139–2160 (2013). https://doi.org/10.1007/s00180-013-0400-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-013-0400-2

Keywords

Navigation