Using mixture of Gamma distributions for Bayesian analysis in an M/G/1 queue with optional second service

Abstract

The paper proposes Bayesian framework in an M/G/1 queuing system with optional second service. The semi-parametric model based on a finite mixture of Gamma distributions is considered to approximate both the general service and re-service times densities in this queuing system. A Bayesian procedure based on birth-death MCMC methodology is proposed to estimate system parameters, predictive densities and some performance measures related to this queuing system such as stationary system size and waiting time. The approach is illustrated with several numerical examples based on various simulation studies.

References

  1. Armero C, Bayarri MJ (1994a) Bayesian prediction in M/M/1 queues. Queueing Syst 15: 401–417

    MathSciNet  MATH  Article  Google Scholar 

  2. Armero C, Bayarri MJ (1994b) Prior assessments for prediction in queues. Statistician 43(1): 139–153

    MathSciNet  Article  Google Scholar 

  3. Ausin MC, Wiper MP (2007) Bayesian control of the number of servers in a GI/M/c queueing system. J Stat Plan Infer 137: 3043–3057

    MathSciNet  MATH  Article  Google Scholar 

  4. Ausin MC, Wiper MP, Lillo RE (2004) Bayesian estimation for the M/G/1 queue using a phase type approximation. J Stat Plan Infer 118: 83–101

    MathSciNet  MATH  Article  Google Scholar 

  5. Ausin MC, Wiper MP, Lillo RE (2007) Bayesian prediction of the transient behaviour and busy period in short- and long-tailed GI/G/1 queueing systems. Comput Stat Data Anal 52: 1615–1635

    MathSciNet  Article  Google Scholar 

  6. Cappé O, Robert CP, Rydén T (2003) Reversible jump MCMC converging to birth-and-death MCMC and more general continuous time samplers. J R Stat Soc Ser B 65: 679–700

    MATH  Article  Google Scholar 

  7. Celeux G, Forbes F, Robert CP, Titterington DM (2006) Titterington deviance information criteria for missing data models. Bayesian Analysis 1(4): 651–674

    MathSciNet  Article  Google Scholar 

  8. Claeskens G, Hjort NL (2008) Model selection and model averaging. Cambridge University Press, Cambridge

    Google Scholar 

  9. Diebolt J., Robert CP (1994) Estimation of finite mixture distributions through Bayesian sampling. J R Stat Soc B 56: 363–375

    MathSciNet  MATH  Google Scholar 

  10. Frühwirth-Schnatter S (2006) Finite mixture and markov switching models. Springer, New York

    Google Scholar 

  11. Frühwirth-Schnatter S, Pyne S (2010) Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions. Biostatistics 11(2): 317–336

    Article  Google Scholar 

  12. Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov chain Monte Carlo in practice. Chapman & Hall, London

    Google Scholar 

  13. Green P (1995) Reversible jump MCMC computation and Bayesian model determination. Biometrika 82: 711–732

    MathSciNet  MATH  Article  Google Scholar 

  14. Green P (2003) Trans-dimensional Markov chain Monte Carlo. OUP, Oxford, pp 179–198

    Google Scholar 

  15. Hastie D, Green P (2012) Model choice using reversible jump Markov Chain Monte Carlo. Statistica Neerlandica (Special issue, All models are wrong…)

  16. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57: 97–109

    MATH  Article  Google Scholar 

  17. Medhi J (1982) Stochastic processes. Wiley Eastern, New Delhi

    Google Scholar 

  18. Mohammadi A, Salehi-Rad MR (2012) Bayesian inference and prediction in an M/G/1 with optional second service. Commun Stat Simul Comput 41(3): 419–435

    MathSciNet  MATH  Article  Google Scholar 

  19. Ramirez P, Lillo RE, Wiper MP (2008) Bayesian analysis of a queuing system with a long-tailed arrival process. Commun Stat Simul Comput 4: 697–712

    MathSciNet  Article  Google Scholar 

  20. Richardson S, Green P (1997) On Bayesian analysis of mixtures with an unknown number of components. J R Stat Soc B 59: 731–792

    MathSciNet  MATH  Article  Google Scholar 

  21. Rios D, Wiper MP, Ruggeri F (1998) Bayesian analysis of M/Er/1 and M/Hk/1 queues. Queueing Syst 30: 289–308

    MATH  Article  Google Scholar 

  22. Robert CP (1996) Mixtures of distributions: inference and estimation. In: Gilks WR, Richardson S, Spiegelhalter DJ (eds) Markov chain Monte Carlo in practice. Chapman and Hall, London, pp 441–464

    Google Scholar 

  23. Salehi-Rad MR, Mengersen K (2002) Reservicing some customers in M/G/1 queues, under two disciplines, Advances in Statestics, Combinatorics and Related Areas. World Scientific Publishing, New Jersey, pp 267–274

    Google Scholar 

  24. Salehi-Rad MR, Mengersen K, Shahkar GH (2004) Reservicing some customers in M/G/1 queues, under three disciplines. Int J Math Math Sci 32: 1715–1723

    MathSciNet  Article  Google Scholar 

  25. Sperrin M, Jaki T, Wit E (2010) Probabilistic relabeling strategies for the label switching problem in Bayesian mixture models. Stat Comput 20: 357–366

    MathSciNet  Article  Google Scholar 

  26. Stephens M (2000a) Bayesian analysis of mixture models with an unknown number of components an alternative to reversible jump methods. Ann Stat 28: 40–74

    MathSciNet  MATH  Article  Google Scholar 

  27. Stephens M (2000b) Dealing with label switching in mixture models. J R Stat Soc B 62(4): 795–809

    MathSciNet  MATH  Article  Google Scholar 

  28. Tierney L (1996) Introduction to general state-space Markov chain theory. In: Gilks WR, Richardson S, Spiegelhalter DJ (eds) Markov chain Monte Carlo in practice. Chapman & Hall, London, pp 59–74

    Google Scholar 

  29. Wiper MP, Rios D, Ruggeri F (2001) Mixtures of gamma distributions with applications. J Comput Graph Stat 10: 440–454

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous reviewers for their detailed and insightful comments.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Mohammadi.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Mohammadi, A., Salehi-Rad, M.R. & Wit, E.C. Using mixture of Gamma distributions for Bayesian analysis in an M/G/1 queue with optional second service. Comput Stat 28, 683–700 (2013). https://doi.org/10.1007/s00180-012-0323-3

Download citation

Keywords

  • Gamma mixtures
  • Bayesian inference
  • MCMC
  • Birth-death predictive distribution
  • M/G/1 queue
  • Optional service