Skip to main content

Goodness-of-fit indices for partial least squares path modeling

Abstract

This paper discusses a recent development in partial least squares (PLS) path modeling, namely goodness-of-fit indices. In order to illustrate the behavior of the goodness-of-fit index (GoF) and the relative goodness-of-fit index (GoFrel), we estimate PLS path models with simulated data, and contrast their values with fit indices commonly used in covariance-based structural equation modeling. The simulation shows that the GoF and the GoFrel are not suitable for model validation. However, the GoF can be useful to assess how well a PLS path model can explain different sets of data.

References

  • Addinsoft SARL (2007–2008) XLSTAT-PLSPM. Paris, France. http://www.xlstat.com/en/products/xlstat-plspm/

  • Akaike H (1987) Factor analysis and AIC. Psychometrika 52(3): 317–332

    MathSciNet  MATH  Article  Google Scholar 

  • Arbuckle JL (2003) Amos 5 User’s Guide. SPSS

  • Bagozzi RP, Yi Y (1994) Advanced topics in structural equation models. In: Bagozzi RP (eds) Advanced methods of marketing research. Blackwell, Oxford, p 151

    Google Scholar 

  • Bass B, Avolio B, Jung D, Berson Y (2003) Predicting unit performance by assessing transformational and transactional leadership. J Appl Psychol 88(2): 207–218

    Article  Google Scholar 

  • Bentler PM (1990) Comparative fit indexes in structural models. Psychol Bull 107(2): 238–246

    Article  Google Scholar 

  • Bollen KA (1989a) A new incremental fit index for general structural equation models. Sociol Methods Res 17(3): 303

    MathSciNet  Article  Google Scholar 

  • Bollen KA (1989b) Structural equations with latent variables. Wiley, New York, NY

    MATH  Google Scholar 

  • Chin W (2010) How to write up and report PLS analyses. In: EspositoVinzi V, Chin WW, Henseler J, Wang H (eds) Handbook of partial least squares: concepts, methods and applications. Springer, Heidelberg, pp 655–690

    Chapter  Google Scholar 

  • Chin WW, Newsted PR (1999) Structural equation modeling analysis with small samples using partial least squares. In: Hoyle RH (eds) Statistical strategies for small sample research. Sage, Thousand Oaks, CA, pp 334–342

    Google Scholar 

  • Chin WW, Marcolin BL, Newsted PR (2003) A partial least squares latent variable modeling approach for measuring interaction effects. Results from a Monte Carlo simulation study and an electronic-mail emotion/adopion study. Inf Syst Res 14(2): 189–217

    Article  Google Scholar 

  • Dijkstra TK (1981) Latent variables in linear stochastic models: reflections on “Maximum Likelihood” and “Partial Least Squares” methods. PhD thesis, Groningen University, Groningen, a second edition was published in 1985 by Sociometric Research Foundation

  • Dijkstra TK (2010) Latent variables and indices: Herman Wold’s basic design and partial least squares. In: Vinzi VE, Chin WW, Henseler J, Wang H (eds) Handbook of partial least squares: concepts, methods, and applications, computational statistics, vol II, Springer, Heidelberg, pp 23–46 (in print)

  • Duarte P, Raposo M (2010) A PLS model to study brand preference: an application to the mobile phone market. In: EspositoVinzi V, Chin WW, Henseler J, Wang H (eds) Handbook of partial least squares: concepts, methods and applications. Springer, Heidelberg, pp 449–485

    Chapter  Google Scholar 

  • EspositoVinzi V, Trinchera L, Squillacciotti S, Tenenhaus M (2008) REBUS-PLS: A response-based procedure for detecting unit segments in PLS path modelling. Appl Stoch Models Bus Ind 24(5): 439–458

    MathSciNet  Article  Google Scholar 

  • Esposito Vinzi V, Chin WW, Henseler J, Wang H (eds) (2010a) Handbook of partial least squares: concepts, methods and applications. Springer, Heidelberg

  • Esposito Vinzi V, Trinchera L, Amato S (2010b) PLS path modeling: from foundations to recent developments and open issues for model assessment and improvement. In: EspositoVinzi V, Chin WW, Henseler J, Wang H (eds) Handbook of partial least squares: concepts, methods and applications. Springer, Heidelberg, pp 47–82

    Chapter  Google Scholar 

  • Fornell C (1995) The quality of economic output: empirical generalizations about its distribution and relationship to market share. Market Sci 14(3): G203–G211

    Article  Google Scholar 

  • Fornell C, Bookstein FL (1982) Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. J Market Res 19(4): 440–452

    Article  Google Scholar 

  • Fornell C, Larcker DF (1981) Evaluating structural equation models with unobservable variables and measurement error. J Market Res 18(1): 39–50

    Article  Google Scholar 

  • Hair J, Sarstedt M, Ringle C, Mena J (2012) An assessment of the use of partial least squares structural equation modeling in marketing research. J Acad Market Sci (forthcoming)

  • Hanafi M (2007) PLS path modelling: computation of latent variables with the estimation mode B. Comput Stat 22(2): 275–292

    MathSciNet  MATH  Article  Google Scholar 

  • Henseler J (2010) On the convergence of the partial least squares path modeling algorithm. Comput Stat 25(1): 107–120

    MathSciNet  MATH  Article  Google Scholar 

  • Henseler J, Ringle C, Sinkovics R (2009) The use of partial least squares path modeling in international marketing. Adv Int Market 20(2009): 277–319

    Google Scholar 

  • Hu LT, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Model 6(1): 1–55

    Article  Google Scholar 

  • Hulland J (1999) Use of partial least squares (PLS) in strategic management research: a review of four recent studies. Strateg Manag J 20(2): 195–204

    Article  Google Scholar 

  • Jöreskog KG, Sörbom D (1986) LISREL VI: Analysis of linear structural relationships by maximum likelihood and least squares methods. Scientific Software, Mooresville, IN

  • Krijnen W, Dijkstra T, Gill R (1998) Conditions for factor (in) determinacy in factor analysis. Psychometrika 63(4): 359–367

    MathSciNet  Article  Google Scholar 

  • Lohmöller JB (1989) Latent variable path modeling with partial least squares. Physica, Heidelberg

  • Monecke A, Leisch F (2012) semPLS: Structural equation modeling using partial least squares. J Stat Softw (forthcoming)

  • Mulaik SA, James LR, van Alstine J, Bennett N, Lind S, Stilwell CD (1989) Evaluation of goodness-of-fit indices for structural equation models. Psychol Bull 105: 430–445

    Article  Google Scholar 

  • Paxton P, Curran P, Bollen K, Kirby J, Chen F (2001) Monte carlo experiments: design and implementation. Struct Equ Model 8(2): 287–312

    Article  Google Scholar 

  • Reinartz WJ, Haenlein M, Henseler J (2009) An empirical comparison of the efficacy of covariance-based and variance-based SEM. Int J Res Market 26(4): 332–344

    Article  Google Scholar 

  • Rigdon EE (1998) Structural equation modeling. In: Marcoulides GA (ed) Modern methods for business research, Lawrence Erlbaum Associates. Mahwah, pp 251–294

  • Rigdon EE, Ringle CM, Sarstedt M (2010) Structural modeling of heterogeneous data with partial least squares. In: Malhotra NK (ed) Review of marketing research, vol 7. Sharpe, pp 255–296

  • Ringle C, Sarstedt M, Straub D (2012) A critical look at the use of pls-sem in mis quarterly. MIS Q 36(1): iii–xiv

  • Ringle CM, Wende S, Will A (2005) SmartPLS 2.0 M3. University of Hamburg, Hamburg, Germany. http://www.smartpls.de

  • Sarstedt M, Ringle CM (2010) Treating unobserved heterogeneity in PLS path modelling: a comparison of FIMIX-PLS with different data analysis strategies. J Appl Stat 37(8): 1299–1318

    MathSciNet  Article  Google Scholar 

  • Sarstedt M, Henseler J, Ringle CM (2011) Multigroup analysis in partial least squares (PLS) path modeling: Alternative methods and empirical results. Adv Int Market 22: 195–218

    Article  Google Scholar 

  • Soft Modeling, Inc (1992–2002) PLS-Graph Version 3.0. Houston, TX. http://www.plsgraph.com

  • Sosik J, Kahai S, Piovoso M (2009) Silver bullet or voodoo statistics. Group Organ Manag 34(1): 5

    Article  Google Scholar 

  • Steiger JH (1990) Structural model evaluation and modification: an interval estimation approach. Multivar Behav Res 25(2): 173–180

    MathSciNet  Article  Google Scholar 

  • Tenenhaus A, Tenenhaus M (2011) Regularized generalized caconical correlation analysis. Psychometrika 76(2): 257–284

    MathSciNet  MATH  Article  Google Scholar 

  • Tenenhaus M, Amato S, Esposito Vinzi V (2004) A global goodness-of-fit index for PLS structural equation modelling. In: Proceedings of the XLII SIS scientific meeting. pp 739–742

  • Tenenhaus M, Vinzi VE, Chatelin YM, Lauro C (2005) PLS path modeling. Comput Stat Data Anal 48(1): 159–205

    MATH  Article  Google Scholar 

  • Wheaton B, Muthén B, Alwin DF, Summers GF (1977) Assessing reliability and stability in panel models. In: Heise D (eds) Sociological methodology. Jossey-Bass, Washington, DC, pp 84–136

    Google Scholar 

  • Wold HOA (1966) Non-linear estimation by iterative least squares procedures. In: David FN (eds) Research papers in statistics. Wiley, London, pp 411–444

    Google Scholar 

  • Wold HOA (1973) Nonlinear iterative partial least squares (NIPALS) modelling. Some current developments. In: Krishnaiah PR (ed) Proceedings of the 3rd international symposium on multivariate analysis, Dayton, OH. pp 383–407

  • Wold HOA (1974) Causal flows with latent variables: partings of the ways in the light of NIPALS modelling. Eur Econ Rev 5(1): 67–86

    Article  Google Scholar 

  • Wold HOA (1982) Soft modelling: the basic design and some extensions. In: Jöreskog KG, Wold HOA (eds) Systems under indirect observation. Causality, structure, prediction, vol II. North-Holland, Amsterdam, New York, Oxford, pp 1–54

  • Wold HOA (1985a) Partial least squares. In: Kotz S, Johnson NL (eds) Encyclopaedia of statistical sciences, vol 6. Wiley, New York, NY, pp 581–591

  • Wold HOA (1985b) Partial least squares and LISREL models. In: Nijkamp P, Leitner H, Wrigley N (eds) Measuring the unmeasurable. Nijhoff, Dordrecht, Boston, Lancaster, pp 220–251

  • Wold HOA (1989) Introduction to the second generation of multivariate analysis. In: Wold HOA (ed) Theoretical empiricism. A general rationale for scientific model-building. Paragon House, New York, pp VIII–XL

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marko Sarstedt.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Henseler, J., Sarstedt, M. Goodness-of-fit indices for partial least squares path modeling. Comput Stat 28, 565–580 (2013). https://doi.org/10.1007/s00180-012-0317-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-012-0317-1

Keywords

  • Partial least squares path modeling (PLS)
  • Goodness-of-fit index (GoF)

JEL Classification

  • C39