Skip to main content
Log in

Measuring and visualizing the stability of biomarker selection techniques

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Feature selection is an essential step when dealing with high-dimensional data. In a diagnostic setting, marker genes have to be selected for specialized low-dimensional gene expression assays. A meaningful biomarker selection is expected to produce stable results in different resampling settings. We define an index to quantify stability and introduce a statistical testing procedure for stability. We also present new methods of visualizing stability and associating it with the accuracy of a subsequent classification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeel T, Helleputte T, Vande Peer Y, Dupont P, Saeys Y (2010) Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26(3): 392–398

    Article  Google Scholar 

  • Bishop CM (1995) Neural networks for pattern recognition, 9th edn. Oxford University Press, Oxford

    Google Scholar 

  • Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406(6795): 536–540

    Article  Google Scholar 

  • Boulesteix AL, Slawski M (2009) Stability and aggregation of ranked gene lists. Brief Bioinform 10(5): 556–568

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1): 5–32

    Article  MATH  Google Scholar 

  • Buchholz M, Kestler HA, Bauer A, Böck W, Rau B, Leder G, Kratzer W, Bommer M, Scarpa A, Schilling M, Adler G, Hoheisel JD, Gress TM (2005) Specialized DNA arrays for the differentiation of pancreatic tumors. Clin Cancer Res 11(22): 8048–8054

    Article  Google Scholar 

  • Davis CA, Gerick F, Hintermair V, Friedel CC, Fundel K, Knffner R, Zimmer R (2006) Reliable gene signatures for microarray classification: assessment of stability and performance. Bioinformatics 22(19): 2356–2363

    Article  Google Scholar 

  • Deb K (2004) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    Google Scholar 

  • Ein-Dor L, Zuk O, Domany E (2006) Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. PNAS 103(15): 5923–5928

    Article  Google Scholar 

  • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3: 1157–1182

    MATH  Google Scholar 

  • Haury AC, Gestraud P, Vert JP (2011) The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. http://arxiv.org/abs/1101.5008

  • Hirsch JE (2005) An index to quantify an individual’s scientific research output. PNAS 102(46): 16569–16572

    Article  Google Scholar 

  • Iman RL, Conover WJ (1987) A measure of top-down correlation. Technometrics 29(3): 351–357

    MATH  Google Scholar 

  • Jelizarow M, Guillemot V, Tenenhaus A, Strimmer K, Boulesteix AL (2010) Over-optimism in bioinformatics: an illustration. Bioinformatics 26(16): 1990–1998

    Article  Google Scholar 

  • Kalousis A, Prados J, Hilario M (2006) Stability of feature selection algorithms: a study on high-dimensional spaces. Knowl Inf Syst 12(1): 95–116

    Article  Google Scholar 

  • Kendall MG, Babington Smith B (1939) The problem of m rankings. Ann Math Stat 10(3): 275–287

    Article  Google Scholar 

  • Kira K, Rendell L (1992) A practical approach to feature selection. In: Sleeman D, Edwards P (eds) ML92: proceedings of the ninth international workshop on Machine learning. Morgan Kaufmann Publishers, San Francisco, pp 249–256

    Google Scholar 

  • Kraus JM, Kestler HA (2010) A highly efficient multi-core algorithm for clustering extremely large datasets. BMC Bioinform 11(1): 169

    Article  Google Scholar 

  • Kraus JM, Müssel C, Palm G, Kestler HA (2011) Multi-objective selection for collecting cluster alternatives. Comput Stat 26(2): 341–353

    Article  Google Scholar 

  • Kuncheva L (2007) A stability index for feature selection. In: Kropatsch W, Kampel M, Hanbury A (eds) Proceedings of the 25th international multi-conference on artificial intelligence and applications. ACTA Press, Anaheim, pp 390–395

    Google Scholar 

  • Křížek P, Kittler J, Hlaváč V (2007) Improving stability of feature selection methods. In: Kropatsch WG, Kampel M, Hanbury A (eds) Computer analysis of images and patterns, Lecture notes in computer science, vol 4673. Springer, Heidelberg, Germany, pp 929–936

    Google Scholar 

  • Lempel R, Moran S (2005) Rank-Stability and Rank-Similarity of Link-Based Web Ranking Algorithms in Authority-Connected Graphs. Inf Retr 8(2): 245–264

    Article  Google Scholar 

  • Lustgarten JL, Gopalakrishnan V, Visweswaran S (2009) Measuring stability of feature selection in biomedical datasets. In: Proceedings of the AMIA Annual Symposium 2009, pp 406–410

  • Ma S (2006) Empirical study of supervised gene screening. BMC Bioinform 7: 537

    Article  Google Scholar 

  • Meinshausen N (2010) Stability selection. J R Stat SocB 74(4): 417–473

    Article  MathSciNet  Google Scholar 

  • Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365(9458): 488–492

    Article  Google Scholar 

  • Novovičová J, Somol P, Pudil P (2009) A new measure of feature selection algorithms’ stability. In: Saygin Y, Yu JX, Kargupta H, Wang W, Ranka S, Yu P, Wu X (eds) Proceedings of the 2009 IEEE international conference on data mining workshops. IEEE Computer Society, Piscataway, pp 382–387

    Chapter  Google Scholar 

  • Rand WM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66: 846–850

    Article  Google Scholar 

  • Saeys Y, Abeel T, Peer Y (2008) Robust feature selection using ensemble feature selection techniques. In: Proceedings of the European conference on machine learning and knowledge discovery in databases—Part II. Springer, Heidelberg, Germany, pp 313–325

  • Simon R, Radmacher MD, Dobbin K, McShane LM (2003) Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 95(1): 14–18

    Article  Google Scholar 

  • Steyerberg EW (2009) Clinical prediction models. Overfitting and optimism in prediction models (Chap. 5). Springer, Heidelberg

    Book  Google Scholar 

  • Strehl A, Ghosh J (2002) Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3: 583–617

    MathSciNet  Google Scholar 

  • Vidmar G, Rode N (2007) Visualising concordance. Comput Stat 22(4): 499–509

    Article  MathSciNet  MATH  Google Scholar 

  • Zucknick M, Richardson S, Stronach EA (2008) Comparing the characteristics of gene expression profiles derived by univariate and multivariate classification methods. Stat Appl Genet Mol Biol 7(1): 7

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans A. Kestler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lausser, L., Müssel, C., Maucher, M. et al. Measuring and visualizing the stability of biomarker selection techniques. Comput Stat 28, 51–65 (2013). https://doi.org/10.1007/s00180-011-0284-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-011-0284-y

Keywords

Navigation