Computational Statistics

, Volume 27, Issue 4, pp 685–700 | Cite as

Estimating value at risk with semiparametric support vector quantile regression

  • Jooyong Shim
  • Yongtae Kim
  • Jangtaek Lee
  • Changha Hwang
Original Paper

Abstract

Value at Risk (VaR) has been used as an important tool to measure the market risk under normal market. Usually the VaR of log returns is calculated by assuming a normal distribution. However, log returns are frequently found not normally distributed. This paper proposes the estimation approach of VaR using semiparametric support vector quantile regression (SSVQR) models which are functions of the one-step-ahead volatility forecast and the length of the holding period, and can be used regardless of the distribution. We find that the proposed models perform better overall than the variance-covariance and linear quantile regression approaches for return data on S&P 500, NIKEI 225 and KOSPI 200 indices.

Keywords

EWMA GARCH t-GARCH Quantile regression Semiparametric support vector quantile regression Value at risk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander CO, Leigh CT (1997) On the covariances matrices used in value at risk models. J Deriv 4: 50–62CrossRefGoogle Scholar
  2. Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econom 31: 307–327MathSciNetMATHCrossRefGoogle Scholar
  3. Bollerslev T (1987) A conditional heteroskedastic time series model for speculative prices and rates of returns. Rev Econom Stat 69: 542–547CrossRefGoogle Scholar
  4. Boudoukh J, Richardson M, Whitelaw RF (1997) Investigation of a class of volatility estimators. J Deriv 4: 63–71CrossRefGoogle Scholar
  5. Chen MJ, Chen J (2002) Application of quantile regression to estimation of value at risk. Working paper, National Chung-Cheng UniversityGoogle Scholar
  6. Diebold FX, Hickman A, Inoue A, Schuermann T (1998) Scale models. Risk 11: 104–107Google Scholar
  7. Engle R, Manganelli S (2004) CAViaR: conditional autoregressive value at risk by regression quantiles. J Bus Econom Stat 22: 367–381MathSciNetCrossRefGoogle Scholar
  8. Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Chapman and Hall, LondonMATHGoogle Scholar
  9. Glasserman P, Heidelberger P, Shahabuddin P (2002) Portfolio value-at-risk with heavy-tailed risk factors. Math Finance 12: 239–269MathSciNetMATHCrossRefGoogle Scholar
  10. Härdle W (1990) Applied nonparametric regression. Cambridge University Press, New YorkMATHGoogle Scholar
  11. Hull J, White A (1998) Value at risk when daily changes in market variables are not normally distributed. J Deriv 5: 9–19CrossRefGoogle Scholar
  12. Jorion P (2007) Value at risk: the new benchmark for managing financial risk. McGraw-Hill, New YorkGoogle Scholar
  13. Kohenker R, Bassett G (1978) Regression quantiles. Econometrica 46: 33–50MathSciNetCrossRefGoogle Scholar
  14. Koenker R, Ng P, Portnoy S (1994) Quantile smoothing splines. Biometrika 81: 673–680MathSciNetMATHCrossRefGoogle Scholar
  15. Kroner KF, Kneafsey KP, Claessen S (1995) Forecasting volatility in common markets. J Forecast 14: 77–95CrossRefGoogle Scholar
  16. Kuester K, Mittnik S, Paolella MS (2006) Value-at-risk prediction: a comparison of alternative strategies. J Financial Econom 4: 53–89Google Scholar
  17. Kuhn HW, Tucker AW (1951) Nonlinear programming. In: Proceedings of 2nd Berkeley symposium. University of California Press, Berkeley, pp 481–492Google Scholar
  18. Li Y, Liu Y, Zhu J (2007) Quantile regression in reproducing kernel Hilbert spaces. J Am Stat Assoc 102: 255–268MathSciNetMATHCrossRefGoogle Scholar
  19. Nychka D, Gray G, Haaland P, Martin D, O’Connell M (1995) A nonparametric regression approach to syringe grading for quality improvement. J Am Stat Assoc 90: 1171–1178MATHCrossRefGoogle Scholar
  20. Shim J, Hwang C (2009) Support vector censored quantile regression under random censoring. Comput Stat Data Anal 53: 912–919MathSciNetMATHCrossRefGoogle Scholar
  21. Smola AJ, Frieβ TT, Schölkopf B (1999) Semiparametric support vector and linear programming machines. Adv Neural Inf Process Syst 11: 585–591Google Scholar
  22. Takeuchi I, Furuhashi T (2004) Non-crossing quantile regressions by SVM. In: Proceedings of 2004 IEEE international joint conference on neural networks, pp 401–406Google Scholar
  23. Taylor JW (1999) A quantile regression approach to estimating the distribution of multiperiod returns. J Deriv 7: 64–78CrossRefGoogle Scholar
  24. Taylor JW (2000) A quantile regression neural network approach to estimating the conditional density of multiperiod returns. J Forecast 19: 299–311CrossRefGoogle Scholar
  25. Vapnik VN (1995) The nature of statistical learning theory. Springer, New YorkMATHGoogle Scholar
  26. White H (1992) Nonparametric estimation of conditional quantiles using neural networks. In: Artificial neural networks: Approximation and learning theory. Blackwell, Oxford, pp 191–205Google Scholar
  27. Yuan M (2006) GACV for quantile smoothing splines. Comput Stat Data Anal 50: 813–829MATHCrossRefGoogle Scholar
  28. Zakai A, Ritov Y (2009) Consistency and localizability. J Mach Learn Res 10: 827–856MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jooyong Shim
    • 1
  • Yongtae Kim
    • 2
  • Jangtaek Lee
    • 2
  • Changha Hwang
    • 2
  1. 1.Department of Data Science and Institute of Statistical InformationInje UniversityKimhaeKorea
  2. 2.Department of StatisticsDankook UniversityYonginKorea

Personalised recommendations