A primer on disease mapping and ecological regression using \({\texttt{INLA}}\)

Abstract

Spatial and spatio-temporal disease mapping models are widely used for the analysis of registry data and usually formulated in a hierarchical Bayesian framework. Explanatory variables can be included by a so-called ecological regression. It is possible to assume both a linear and a nonparametric association between disease incidence and the explanatory variable. Integrated nested Laplace approximations (INLA) can be used as a tool for Bayesian inference. INLA is a promising alternative to Markov chain Monte Carlo (MCMC) methods which provides very accurate results within short computational time. It is shown in this paper, how parameter estimates for well-known spatial and spatio-temporal models can be obtained by running INLA directly in \({\texttt{R}}\) using the package \({\texttt{INLA}}\). Selected \({\texttt{R}}\) code is shown. An emphasis is given to the inclusion of an explanatory variable. Cases of Coxiellosis among Swiss cows from 2005 to 2008 are used for illustration. The number of stillborn calves is included as time-varying covariate. Additionally, various aspects of INLA such as model choice criteria, computer time, accuracy of the results and usability of the \({\texttt{R}}\) package are discussed.

This is a preview of subscription content, access via your institution.

References

  1. Aitken I (1989) Clinical aspects and prevention of Q fever in animals. Eur J Epidemiol 5(4): 420–424

    MathSciNet  Article  Google Scholar 

  2. Assunção R, Reis I, Oliveira C (2001) Diffusion and prediction of leishmaniasis in a large metropolitan area in Brazil with a Bayesian space-time model. Stat Med 20(15): 2319–2335

    Article  Google Scholar 

  3. Banerjee S, Carlin B, Gelfand A (2004) Hierarchical modeling and analysis for spatial data. Chapman & Hall/CRC, London

    Google Scholar 

  4. Bernardinelli L, Clayton D, Montomoli C (1995) Bayesian estimates of disease maps: how important are priors?. Stat Med 14: 2411–2431

    Article  Google Scholar 

  5. Bernardinelli L, Clayton D, Pascutto C, Montomoli C, Ghislandi M (1995) Bayesian analysis of space-time variation in disease risk. Stat Med 14: 2433–2443

    Article  Google Scholar 

  6. Berzuini C, Clayton D (1994) Bayesian analysis of survival on multiple time scales. Stat Med 13: 823–838

    Article  Google Scholar 

  7. Besag J, York J, Mollié A (1991) Bayesian image restoration with two applications in spatial statistics. Ann Inst Stat Math 43(1): 1–59

    MATH  Article  Google Scholar 

  8. Clayton D, Bernardinelli L (1992) Bayesian methods for mapping disease risk. In: Cuzick J (ed) et al Geographical and environmental epidemiology. Methods for small area studies. Oxford University Press, Oxford, pp 205–220

    Google Scholar 

  9. Clayton D, Bernardinelli L, Montomoli C (1993) Spatial correlation in ecological analysis. Int J Epidemiol 22(6): 1193–1202

    Article  Google Scholar 

  10. Czado C, Gneiting T, Held L (2009) Predictive model assessment for count data. Biometrics 65(4): 1254–1261

    MATH  Article  Google Scholar 

  11. Dupuis G, Petite J, Péter O, Vouilloz M (1987) An important outbreak of human Q fever in a Swiss alpine valley. Int J Epidemiol 16(2): 282–287

    Article  Google Scholar 

  12. Fahrmeir L, Lang S (2001) Bayesian inference for generalized additive mixed models based on Markov random field priors. J R Stat Soc Ser C 50(2): 201–220

    MathSciNet  Article  Google Scholar 

  13. Gneiting T, Raftery AE (2007) Strictly proper scoring rules, prediction, and estimation. J Am Stat Assoc 102(477): 359–378

    MathSciNet  MATH  Article  Google Scholar 

  14. Held L, Schrödle B, Rue H (2010) Posterior and cross-validatory predictive checks: a comparison of MCMC and INLA. In: Kneib T, Tutz G (eds) Statistical modelling and regression structures—Festschrift in honour of Ludwig Fahrmeir. Physica-Verlag, Heidelberg

    Google Scholar 

  15. Knorr-Held L (2000) Bayesian modelling of inseparable space-time variation in disease risk. Stat Med 19: 2555–2567

    Article  Google Scholar 

  16. Kullback S, Leibler R (1951) On information and sufficiency. Ann Math Stat 22(1): 79–86

    MathSciNet  MATH  Article  Google Scholar 

  17. Lindgren F, Rue H (2008) On the second-order random walk model for irregular locations. Scand J Stat 35: 691–700

    MathSciNet  MATH  Article  Google Scholar 

  18. Martino S, Rue H (2009) Implementing approximate Bayesian inference using Integrated Nested Laplace Approximation: A manual for the \({\texttt{INLA}}\) program. Technical report, Norwegian University of Science and Technology Trondheim

  19. Moreno P, Ho P, Vasconcelos N (2004) A Kullback-Leibler divergence based kernel for SVM classification in multimedia applications. In: Thrun S, Saul L, Schölkopf B (eds) Advances in neural information processing systems 16. MIT Press, Cambridge

    Google Scholar 

  20. Natario I, Knorr-Held L (2003) Non-parametric ecological regression and spatial variation. Biom J 45(6): 670–688

    MathSciNet  Article  Google Scholar 

  21. R Development Core Team (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org, ISBN 3-900051-07-0

  22. Rue H, Held L (2005) Gaussian Markov random fields. Chapman & Hall/CRC, London

    Google Scholar 

  23. Rue H, Martino S (2007) Approximate Bayesian inference for hierarchical Gaussian Markov random field models. J Stat Plan Inference 137: 3177–3192

    MathSciNet  MATH  Article  Google Scholar 

  24. Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). J R Stat Soc Ser B 71: 319–392

    MathSciNet  Article  Google Scholar 

  25. Schmid V, Held L (2004) Bayesian extrapolation of space-time trends in cancer registry data. Biometrics 60: 1034–1042

    MathSciNet  MATH  Article  Google Scholar 

  26. Schrödle B, Held L, Riebler A, Danuser J (2010) Using INLA for the evaluation of veterinary surveillance data from Switzerland: a case study. Technical report, University of Zurich

  27. Spiegelhalter D, Best N, Carlin B, van der Linde A (2002) Bayesian measures of model complexity and fit (with discussion). J R Stat Soc Ser B 64(4): 583–639

    MathSciNet  MATH  Article  Google Scholar 

  28. Tierney L, Kadane JB (1986) Accurate approximations for posterior moments and marginal densities. J Am Stat Assoc 81(393): 82–86

    MathSciNet  MATH  Article  Google Scholar 

  29. Woldehiwet Z (2004) Q fever (Coxiellosis): epidemiology and pathogenesis. Res Vet Sci 77(2): 93–100

    Article  Google Scholar 

  30. Wood S, Kohn R (1998) A Bayesian approach to robust binary nonparametric regression. J Am Stat Assoc 93(441): 203–213

    MATH  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Birgit Schrödle.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (ZIP 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schrödle, B., Held, L. A primer on disease mapping and ecological regression using \({\texttt{INLA}}\) . Comput Stat 26, 241–258 (2011). https://doi.org/10.1007/s00180-010-0208-2

Download citation

Keywords

  • Disease mapping
  • Ecological regression
  • INLA
  • Spatio-temporal models