Skip to main content
Log in

Bayesian subset selection for threshold autoregressive moving-average models

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Optimal subset selection among a general family of threshold autoregressive moving-average (TARMA) models is considered. The usual complexity of model/order selection is increased by capturing the uncertainty of unknown threshold levels and an unknown delay lag. The Monte Carlo method of Bayesian model averaging provides a possible way to overcome such model uncertainty. Incorporating with the idea of Bayesian model averaging, a modified stochastic search variable selection method is adapted to consider subset selection in TARMA models, by adding latent indicator variables for all potential model lags as part of the proposed Markov chain Monte Carlo sampling scheme. Metropolis–Hastings methods are employed to deal with the well-known difficulty of including moving-average terms in the model and a novel proposal mechanism is designed for this purpose. Bayesian comparison of two hyper-parameter settings is carried out via a simulation study. The results demonstrate that the modified method has favourable performance under reasonable sample size and appropriate settings of the necessary hyper-parameters. Finally, the application to four real datasets illustrates that the proposed method can provide promising and parsimonious models from more than 16 million possible subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amendola A, Niglio M, Vitale C (2006) The moments of SETARMA models. Stat Probab Lett 76: 625–633

    Article  MATH  MathSciNet  Google Scholar 

  • Baragona R, Battaglia F, Cucina D (2004) Estimating threshold subset autoregressive moving-average models by genetic algorithms. Int J Stat 62: 39–61

    MathSciNet  Google Scholar 

  • Brockwell P, Liu J, Tweedie RL (1992) On the existence of stationary threshold autoregressive moving-average processes. J Time Ser Anal 13: 95–107

    Article  MATH  MathSciNet  Google Scholar 

  • Chen CWS (1999) Subset selection of autoregressive time series models. J Forecast 18: 505–516

    Article  MATH  Google Scholar 

  • Chen CWS, Gerlach RH, Lin AMH (2010) Falling and explosive, dormant, and rising markets via multiple-regime financial time series models. Appl Stoch Model Bus Ind 26: 28–49

    Article  MathSciNet  Google Scholar 

  • Chen CWS, Lin EMH, Liu FC, Gerlach R (2008) Bayesian estimation for parsimonious threshold autoregressive models in R. Newsl R proj 8: 26–33

    Google Scholar 

  • Chen CWS, So MKP, Gerlach R (2005) Assessing and testing for threshold nonlinearity in stock returns. Aust New Zealand Appl Stat 47: 473–488

    Article  MATH  MathSciNet  Google Scholar 

  • De Gooijer G (1998) On threshold moving-average models. J Time Ser Anal 19: 1–18

    Article  MATH  MathSciNet  Google Scholar 

  • Fernandez C, Ley E, Steel MFJ (2001) Benchmark priors for Bayesian model averaging. J Econ 100: 381–427

    MATH  MathSciNet  Google Scholar 

  • Franses PH, van Dijk D (2000) Nonlinear time series models in empirical finance. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • George EI, McCulloch RE (1993) Variable selection via Gibbs sampling. J Am Stat Assoc 88: 881–889

    Article  Google Scholar 

  • Gerlach R, Carter CK, Kohn R (1999) Diagnostics for time series analysis. J Time Ser Anal 20: 309–330

    Article  MATH  MathSciNet  Google Scholar 

  • Geweke J (1995) Bayesian comparison of econometric models. Working paper 532. Research Department, Federal Reserve Bank of Minneapolis

  • Ghaddar DK, Tong H (1981) Data transformation and self-exciting threshold autoregression. Appl Stat 30: 238–248

    Article  Google Scholar 

  • Green PJ (1995) Reversible jump MCMC computation and Bayesian model determination. Biometrika 82: 711–732

    Article  MATH  MathSciNet  Google Scholar 

  • Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian model averaging: a tutorial. Stat Sci 14: 382–417

    Article  MATH  MathSciNet  Google Scholar 

  • Li CW, Li WK (1996) On a double-threshold autoregressive heteroscedastic time series model. J Appl Econ 11: 253–274

    Article  Google Scholar 

  • Ling S (1999) On the probabilistic properties of a double threshold ARMA conditional heteroskedastic model. J Appl Probab 36: 688–705

    Article  MATH  MathSciNet  Google Scholar 

  • Ling S, Tong H, Li D (2007) Ergodicity and invertibility of threshold moving-average models. Bernoulli 13: 161–168

    Article  MATH  MathSciNet  Google Scholar 

  • Liu FC (2009) Volatility forecasting and model selection for nonlinear time series, Doctoral Thesis, Department of Statistics, Feng Chia University, December 2009

  • Nakatsuma T (2000) Bayesian analysis of ARMA-GARCH models: a Markov chain sampling approach. J Econ 95: 57–69

    MATH  MathSciNet  Google Scholar 

  • Petruccelli J, Woolford SW (1984) A threshold AR(1) model. J Appl Probab 21: 270–286

    Article  MATH  MathSciNet  Google Scholar 

  • Philippe A (2006) Bayesian analysis of autoregressive moving average processes with unknown orders. Comput Stat Data Anal 51: 1904–1923

    Article  MATH  MathSciNet  Google Scholar 

  • Potter SM (1995) A nonlinear approach to US GNP. J Appl Econ 10: 109–125

    Article  Google Scholar 

  • Raftery AE, Madigan D, Hoeting JA (1997) Bayesian model averaging for linear regression models. J Am Stat Assoc 92: 179–191

    Article  MATH  MathSciNet  Google Scholar 

  • Smith M, Kohn R (1996) Nonparametric regression using Bayesian variable selection. J Econ 75: 317–343

    MATH  Google Scholar 

  • So MKP, Chen CWS (2003) Subset threshold autoregression. J Forecast 22: 49–66

    Article  Google Scholar 

  • So MKP, Chen CWS, Chen MT (2005) A Bayesian threshold nonlinearity test for financial time series. J Forecast 24: 61–75

    Article  MathSciNet  Google Scholar 

  • So MKP, Chen CWS, Liu FC (2006) Best subset selection of autoregressive models with exogenous variables and generalized autoregressive conditional heteroscedasticity errors. J Roy Stat Soc Ser C 55: 201–224

    Article  MATH  MathSciNet  Google Scholar 

  • Tanner MA, Wong WH (1987) The calculation of posterior distributions by data augmentation. J Am Stat Assoc 82: 528–540

    Article  MATH  MathSciNet  Google Scholar 

  • Tong H (1978) On a threshold model. In: Chen CH (ed) Pattern recognition and signal processing. Sijthoff & Noordhoff, Amsterdam

  • Tong H, Lim KS (1980) Threshold autoregression, limit cycles and cyclical data (with discussion). J Roy Stat Soc Ser B 42: 245–292

    MATH  Google Scholar 

  • Tong H (1983) Threshold models in nonlinear time series analysis. Lecture notes in statistics. Springer, New York

    Google Scholar 

  • Tong H (1990) Non-linear time series. A dynamical system approach. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Tsay RS (1989) Testing and modeling threshold autoregressive processes. J Am Stat Assoc 84: 231–240

    Article  MATH  MathSciNet  Google Scholar 

  • Tsay RS (1998) Testing and modeling multivariate threshold models. J Am Stat Assoc 93: 1188–1202

    Article  MATH  MathSciNet  Google Scholar 

  • Tsay RS (2005) Analysis of financial time series, 2nd edn. John Wiley & Sons, New Jersey

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathy W. S. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C.W.S., Liu, F.C. & Gerlach, R. Bayesian subset selection for threshold autoregressive moving-average models. Comput Stat 26, 1–30 (2011). https://doi.org/10.1007/s00180-010-0198-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-010-0198-0

Keywords

Navigation