\({\tt surveillance}\): An R package for the monitoring of infectious diseases

Abstract

Public health surveillance of emerging infectious diseases is an essential instrument in the attempt to control and prevent their spread. This paper presents the R package “surveillance”, which contains functionality to visualise routinely collected surveillance data and provides algorithms for the statistical detection of aberrations in such univariate or multivariate time series. For evaluation purposes, the package includes real-world example data and the possibility to generate surveillance data by simulation. To compare algorithms, benchmark numbers like sensitivity, specificity, and detection delay can be computed for a set of time series. Package motivation, use and potential are illustrated through a mixture of surveillance theory, case study and R code snippets.

This is a preview of subscription content, access via your institution.

References

  1. Altmann D (2003) The surveillance system of the Robert Koch Institute, Germany (Personal Communication)

  2. Andersson H, Britton T (2000) Stochastic epidemic models and their statistical analysis, vol 151. Springer Lectures Notes in Statistics. Springer, Heidelberg

    Google Scholar 

  3. Ethelberg S, Mølbak K (2007) GastroEnteRitis Monitor, Statens Serum Institut, Denmark, http://germ.dk [Online; accessed 27-March-2007]

  4. Farrington C, Andrews N (2003) Outbreak detection: application to infectious disease surveillance. In: Brookmeyer R, Stroup D (eds). Monitoring the health of populations, chapter 8. Oxford University Press, NY USA, pp 203–231

    Google Scholar 

  5. Farrington C, Andrews N, Beale A, Catchpole M (1996) A statistical algorithm for the early detection of outbreaks of infectious disease. J R Stat Soc Ser A 159:547–563

    MATH  Article  MathSciNet  Google Scholar 

  6. Held L, Hofmann M, Höhle M, Schmid V (2006) A two component model for counts of infectious diseases. Biostatistics 7:422–437

    MATH  Article  Google Scholar 

  7. Held L, Höhle M, Hofmann M (2005) A statistical framework for the analysis of multivariate infectious disease surveillance data. Stat Modell 5:187–199

    MATH  Article  Google Scholar 

  8. Höhle M (2006) Poisson regression charts for the monitoring of surveillance time series. Technical report, Department of Statistics, University of Munich. SFB Discussion Paper 500

  9. Hutwagner L, Browne T, Seeman G, Fleischhauer A (2005) Comparing abberation detection methods with simulated data. Emerg Infect Dis 11:314–316

    Google Scholar 

  10. Kenett R, Pollak M (1983) On sequential detection of a shift in the probability of a rare event. J Am Stat Assoc 78(382):389–395

    MATH  Article  MathSciNet  Google Scholar 

  11. Knoth S (2004) spc: Statistical Process Control. R package version 0.2

  12. Lawson A, Kleinman K (eds) (2005) Spatial and syndromic surveillance for public health. Wiley, London

    Google Scholar 

  13. Leisch F (2003) Sweave, Part I: Mixing R and LaTeX. R Newsletter 2(3):28–31

    Google Scholar 

  14. Lewin-Koh NJ, Bivand R, contributions by Edzer Pebesma J, Hausmann P, Rubio VG, Jagger T, Luque SP (2006) maptools: Tools for reading and handling spatial objects. R package version 0.6-5

  15. Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R. R News 5(2):9–13

    Google Scholar 

  16. Pierce D, Schafer D (1986) Residuals in generalized linear models. J Am Stat Assoc 81(396):977–986

    MATH  Article  MathSciNet  Google Scholar 

  17. R Development Core Team (2006) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria, ISBN 3-900051-07-0

  18. Riebler A (2004) Empirischer Vergleich von statistischen Methoden zur Ausbruchserkennung bei Surveillance Daten. Department of Statistics, University of Munich, Bachelor’s thesis

    Google Scholar 

  19. Robert Koch Institute (2004) SurvStat@RKI. http://www3.rki.de/SurvStat (Date of query: September 2004)

  20. Robert Koch Institute (2006) Epidemiologisches Bulletin 33. Available from http://www.rki.de

  21. Rogerson P, Yamada I (2004) Approaches to syndromic surveillance when data consist of small regional counts. Morb Mortal Wkly Rep 53:79–85

    Google Scholar 

  22. Rossi G, Lampugnani L, Marchi M (1999) An approximate CUSUM procedure for surveillance of health events. Stat Med 18:2111–2122

    Article  Google Scholar 

  23. Sonesson C, Bock D (2003) A review and discussion of prospective statistical surveillance in public health. J R Stat Soc Ser A 166:5–12

    Article  MathSciNet  Google Scholar 

  24. Sonesson C, Frisén M (2005) Multivariate surveillance. In: Lawson A, Kleinman K (eds). Spatial and syndromic surveillance for public health, chapter 9. Wiley, London, pp 153–166

    Chapter  Google Scholar 

  25. Stroup D, Williamson G, Herndon J, Karon J (1989) Detection of aberrations in the occurrence of notifiable diseases surveillance data. Stat Med 8:323–329

    Article  Google Scholar 

  26. Widdowson M-A, Bosman A, van Straten E, Tinga M, Chaves S, van Eerden L, van Pelt W (2003) Automated, Laboratory-based system using the Internet for disease outbreak detection, the Netherlands. Emerg Infect Dis 9(9):1046–1052

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Höhle.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Höhle, M. \({\tt surveillance}\): An R package for the monitoring of infectious diseases. Computational Statistics 22, 571–582 (2007). https://doi.org/10.1007/s00180-007-0074-8

Download citation

Keywords

  • Monitoring
  • Public health surveillance
  • Time series of counts
  • Outbreak detection
  • Univariate and multivariate surveillance