Skip to main content
Log in

Moment equations and Hermite expansion for nonlinear stochastic differential equations with application to stock price models

  • Original Paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Exact moment equations for nonlinear Itô processes are derived. Taylor expansion of the drift and diffusion coefficients around the first conditional moment gives a hierarchy of coupled moment equations which can be closed by truncation or a Gaussian assumption. The state transition density is expanded into a Hermite orthogonal series with leading Gaussian term and the Fourier coefficients are expressed in terms of the moments. The resulting approximate likelihood is maximized by using a quasi Newton algorithm with BFGS secant updates. A simulation study for the CEV stock price model compares the several approximate likelihood estimators with the Euler approximation and the exact ML estimator (Feller, in Ann Math 54: 173–182, 1951).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. 1 Actually, the expansion is in terms of the orthogonal system ψn(x) = ϕ(x)1/2Hn(x) (oscillator eigenfunctions), i.e., \(q(x) :=p(x) / \phi(x)^{1 / 2}=\sum\nolimits_{n=0}^{\infty} c_{n} \psi_{n}(x)\), so the expansion of q = p/ϕ1/2 must converge. The function to be expanded must be square integrable in the interval (−∞, +∞), i.e., ∫ q(x)2dx = ∫ exp(x2/2)p2(x)dx < ∞ (Courant and Hilbert, 1968, p. 81–82).

  2. 2 Here a simplified SDE with approximate diffusion coefficient g(y) = g(yi) is used (cf. Yu and Phillips 2001).

References

  • Abramowitz M, Stegun I (1965) Handbook of mathematical functions. Dover, New York

    MATH  Google Scholar 

  • Aït-Sahalia Y (2002) Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70(1):223–262

    Article  MathSciNet  MATH  Google Scholar 

  • Andersen T, Lund J (1997) Estimating continuous-time stochastic volatility models of the short-term interest rate. J Econom 77:343–377

    Article  MATH  Google Scholar 

  • Arnold L (1974) Stochastic differential equations. Wiley, New York

    MATH  Google Scholar 

  • Bergstrom A (1990) Continuous time econometric modelling. Oxford University Press, Oxford

    Google Scholar 

  • Bibby M, Sorensen M (1995) Martingale estimation functions for discretely observed diffusion processes. Bernoulli 1:1–39

    Article  MathSciNet  MATH  Google Scholar 

  • Courant R, Hilbert D (1968) Methoden der mathematischen physik. Springer, Berlin Heidelberg New York

    Book  MATH  Google Scholar 

  • Cox J, Ross S (1976) The valuation of options for alternative stochastic processes. J Financ Econom 3:145–166

    Article  Google Scholar 

  • Dennis Jr. J, Schnabel R (1983) Numerical methods for unconstrained optimization and nonlinear equations. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Elerian O, Chib S, Shephard N (2001) Likelihood inference for discretely observed nonlinear diffusions. Econometrica 69(4):959–993

    Article  MathSciNet  MATH  Google Scholar 

  • Feller W (1951) Two singular diffusion problems. Ann Math 54:173–182

    Article  MathSciNet  MATH  Google Scholar 

  • Gordon N, Salmond D, Smith A (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Trans Radar Signal Process 140(2):107–113

    Article  Google Scholar 

  • Hürzeler M, Künsch H (1998) Monte carlo approximations for general state-space models. J Comput Graph Stat 7(2):175–193

    MathSciNet  MATH  Google Scholar 

  • Jensen B, Poulsen R (2002) Transition densities of diffusion processes: numerical comparision of approximation techniques. Inst Invest 18–32

    Article  Google Scholar 

  • Kitagawa G (1987) Non-gaussian state space modeling of nonstationary time series. J Am Stat Assoc 82:1032–1063

    MathSciNet  MATH  Google Scholar 

  • Kitagawa G (1996) Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J Comput Graph Stat 5(1):1–25

    MathSciNet  Google Scholar 

  • Pedersen A (1995) A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand J Stat 22:55–71

    MathSciNet  MATH  Google Scholar 

  • Shoji I (2003) Approximation of conditional moments. J Comput Math 2:163–190

    MATH  Google Scholar 

  • Shoji I, Ozaki T (1997) Comparative study of estimation methods for continuous time stochastic processes. J Time Series Anal 18(5):485–506

    Article  MathSciNet  MATH  Google Scholar 

  • Shoji I, Ozaki T (1998) A statistical method of estimation and simulation for systems of stochastic differential equations. Biometrika 85(1):240–243

    Article  MathSciNet  MATH  Google Scholar 

  • Singer H (1995) Analytical score function for irregularly sampled continuous time stochastic processes with control variables and missing values. Econ Theory 11:721–735

    Article  MathSciNet  Google Scholar 

  • Singer H (2002) Parameter estimation of nonlinear stochastic differential equations: simulated maximum likelihood vs. extended Kalman filter and Itô-Taylor expansion. J Comput Graph Stat 11(4):972–995

    Article  Google Scholar 

  • Singer H (2003) Simulated maximum likelihood in nonlinear continuous-discrete state space models: importance sampling by approximate smoothing. Comput Stat 18(1):79–106

    Article  MathSciNet  MATH  Google Scholar 

  • Yu Y, Phillips P (2001) A Gaussian approach for continuous time models of the short term interest rate. Econ J 4:210–224

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Singer.

Appendix: derivation of the moment equations

Appendix: derivation of the moment equations

The conditional density p(yt|xs) fulfils the Fokker-Planck equation

$$\begin{aligned} \frac{\partial p(y, t | x, s)}{\partial t}=&-\sum_{i} \frac{\partial}{\partial y_{i}}\left[f_{i}(y, t) p(y, t | x, s)\right] \\ &+\frac{1}{2} \sum_{i j} \frac{\partial^{2}}{\partial y_{i} \partial y_{j}}\left[\Omega_{i j}(y, t) p(y, t | x, s)\right] \\ :=& F(y, l) p(y, t | x, s) \end{aligned}$$
(26)

where F is the Fokker-Planck operator. Thus the first conditional moment μ(tti) = E[Y(t)∣Yi] fulfils

$$\begin{aligned} \dot{\mu}\left(t | t_{i}\right) &=(\partial / \partial t) \int y p\left(y, t | Y^{i}, t_{i}\right) \mathrm{d} y=\int y F p\left(y, t | Y^{i}, t_{i}\right) \mathrm{d} y \\ &=\int(L y) p\left(y, t | Y^{i}, t_{i}\right) \mathrm{d} y=E\left[(L y)(Y(t)) | Y^{i}\right] \end{aligned}$$

where \(L=\sum\nolimits_{j} f_{j}(y, t) \frac{\partial}{\partial y_{j}}+\frac{1}{2} \sum\nolimits_{j k} \Omega_{j k}(y, t) \frac{\partial^{2}}{\partial y_{j} \partial y_{k}}\)the backward operator. Thus we obtain

$$\dot{\mu}\left(t | t_{i}\right)=\int f(y, t) p\left(y, t | Y^{i}, t_{i}\right) \mathrm{d} y=E\left[f(Y, t) | Y^{i}\right].$$

Higher order moments mk:= E[Mk]:= E[(Y − μ)k] fulfil the equations (scalar notation, condition suppressed)

$$\begin{aligned} \dot{m}_{k} &=(\partial / \partial t) \int(y-\mu)^{k} p(y, t) \mathrm{d} y \\ &=-\int k(y-\mu)^{k-1} \dot{\mu} p(y, t) \mathrm{d} y+\int\left(L(y-\mu)^{k}\right) p(y, t) \mathrm{d} y\\ &=-k E\left[(Y-\mu)^{k-1}\right] E[f(Y)]+k E\left[f(Y) *(Y-\mu)^{k-1}\right] \\ &+\frac{1}{2} k(k-1) E\left[\Omega(Y)(Y-\mu)^{k-2}\right] \\ & = k E\left[f(Y) *\left(M_{k-1}-m_{k-1}\right)\right]+\frac{1}{2} k(k-1) E\left[\Omega(Y) * M_{k-2}\right] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singer, H. Moment equations and Hermite expansion for nonlinear stochastic differential equations with application to stock price models. Computational Statistics 21, 385–397 (2006). https://doi.org/10.1007/s00180-006-0001-4

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00180-006-0001-4

Keywords