Skip to main content
Log in

Effect of friction time on the metallurgical behavior and mechanical properties of similar AA2024 and dissimilar AA2024/TA6V rotary friction welds

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The present work investigates the Rotary Friction Welding (RFW) of similar AA2024 and dissimilar AA2024/TA6V RFW joints. The effect of friction time on the evolution of microstructure and mechanical properties was investigated to determine the optimal friction time. It was found that the increase of friction time from 2 s to 10 s resulted in improved gradually the mechanical properties of both AA2024/AA2024 and AA2024/TA6V RFW joints and shifted the fracture location from the central zone towards the AA2024 material for the AA2024/TA6V RFW dissimilar joint. The highest tensile strength values recorded were 272.54 MPa and 254.47 MPa for the similar AA2024/AA2024 and the dissimilar AA2024/TA6V RFW joints respectively, both were achieved at 10 s friction time. Scanning electron microscopic (SEM) examination and Energy Dispersive X-ray (EDX) analysis indicated the formation of an interdiffusion band at the interface of the dissimilar AA2024/TA6V RFW joint, consisting of Cu, Al, Ti, Mg, and V atoms. Increasing the friction time enhanced the material mixing and led to the alteration of the fracture mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. American Welding Society (2009) Recommended practices for friction welding. An American National Standard ANSI/AWS C6.1-89, Miami

  2. Hynes NRJ, Velu PS, Nithin AM (2018) Friction push plug welding in airframe structures using Ti-6Al-4V plug. J Braz Soc Mech Sci Eng 40:1–7. https://doi.org/10.1007/s40430-018-1088-6

    Article  Google Scholar 

  3. Lakache HE, May A, Badji R et al (2024) Mechanical behavior and microstructure of dissimilar aluminium/titanium rotary friction weld joints. Metall Res Tech 121:112. https://doi.org/10.1051/metal/2024001

    Article  Google Scholar 

  4. Lakache HE, May A, Badji R et al (2024) Effect of copper interlayer in dissimilar TA6V/AU4G rotary friction weld joints. Weld World 1–11. https://doi.org/10.1007/s40194-024-01771-z

  5. Meisnar M, Baker S, Bennett JM et al (2017) Microstructural characterization of rotary friction welded AA6082 and Ti-6Al-4V dissimilar joints. Mater Des 132:188–97. https://doi.org/10.1016/j.matdes.2017.07.004

    Article  Google Scholar 

  6. Kar A, Kailas SV, Suwas S (2018) Effect of zinc interlayer in microstructure evolution and mechanical properties in dissimilar friction stir welding of aluminum to titanium. J Mater Eng Perform 27:6016–6026. https://doi.org/10.1007/s11665-018-3697-8

    Article  Google Scholar 

  7. Kar A, Choudhury SK, Suwas S et al (2018) Effect of niobium interlayer in dissimilar friction stir welding of aluminum to titanium. Mater Character 145:402–412. https://doi.org/10.1016/j.matchar.2018.09.007

    Article  Google Scholar 

  8. Mukhawana DM, Mashinini PM, Madyira DM (2018) Analysis of the Microstructure and Microhardness of Rotary Friction Welded Titanium (Ti-6AL-V4) Rods. Eleventh South Afric Conf Comput App Mech

  9. Nu HTM, Loc NH, Minh LP (2021) Influence of the rotary friction welding parameters on the microhardness and joint strength of Ti6Al4V alloys. Proc IME B J Eng Manuf 235:795–805. https://doi.org/10.1177/0954405420972549

    Article  Google Scholar 

  10. Cheniti B, Miroud D, Badji R et al (2019) Microstructure and mechanical behavior of dissimilar AISI 304L/WC-Co cermet rotary friction welds. Mater Sci Eng A 758:36–46. https://doi.org/10.1016/j.msea.2019.04.081

    Article  Google Scholar 

  11. Winiczenko R, Goroch O, Krzyńska A et al (2017) Friction welding of tungsten heavy alloy with aluminium alloy. J Mater Process Technol 246:42–55. https://doi.org/10.1016/j.jmatprotec.2017.03.009

    Article  Google Scholar 

  12. Choi JW, Li W, Ushioda K et al (2022) Effect of applied pressure on microstructure and mechanical properties of linear friction welded AA1050-H24 and AA5052-H34 joints. Sci Technol Weld Join 27:92–102. https://doi.org/10.1080/13621718.2020.1719304

    Article  Google Scholar 

  13. Kimura M, Suzuki K, Kusaka M et al (2017) Effect of friction welding condition on joining phenomena and mechanical properties of friction welded joint between 6063 aluminum alloy and AISI 304 stainless steel. J Manuf Process 26:178–187. https://doi.org/10.1016/j.jmapro.2017.02.008

    Article  Google Scholar 

  14. Alves EP, Piorino Neto F, An CY (2010) Welding of AA1050 aluminum with AISI 304 stainless steel by the rotary friction welding process. J Aerosp Technol Manag 2:301–306. https://doi.org/10.5028/jatm.2010.02037110

    Article  Google Scholar 

  15. Li X, Li J, Liao Z et al (2016) Microstructure evolution and mechanical properties of rotary friction welded TC4/SUS321 joints at various rotation speeds. Mater Des 99:26–36. https://doi.org/10.1016/j.matdes.2016.03.037

    Article  Google Scholar 

  16. Avinash M, Chaitanya GVK, Giri DK et al (2007) Microstructure and mechanical behavior of rotary friction welded titanium alloys. Proc World Acad Sci Eng Technol 26:1307–6884

    Google Scholar 

  17. Lakache HE, May A, Badji R (2023) Optimization of the RFW process parameters by using the Taguchi method for the Ti6Al4V Grade-5 alloy. Acta Metall Slovaca 29:155–160. https://doi.org/10.36547/ams.29.3.1883

    Article  Google Scholar 

  18. Stütz M, Pixner F, Wagner J et al (2018) Rotary friction welding of molybdenum components. Int J Refract Met Hard Mater 73:79–84. https://doi.org/10.1016/j.ijrmhm.2018.02.004

    Article  Google Scholar 

  19. Li X, Li J, Jin F et al (2018) Effect of rotation speed on friction behavior of rotary friction welding of AA6061-T6 aluminum alloy. Weld World 62:923–930. https://doi.org/10.1007/s40194-018-0601-y

    Article  Google Scholar 

  20. Eddine L, Abdelghani M, Riad B (2023) Rotary friction welding parameters effects upon mechanical properties and microstructure of AA2024 weld joints. Eng Sol Mech 11:291–298. https://doi.org/10.5267/j.esm.2023.2.003

    Article  Google Scholar 

  21. Lakache HE, May A, Badji R et al (2023) The Impact of the Rotary Friction Welding Pressure on the Mechanical and Microstructural Characteristics of Friction Welds Made of the Alloys TiAl6V4 and 2024 Aluminum. Exp Tech 1–12. https://doi.org/10.1007/s40799-023-00671-z

  22. Lakache HE, May A, Badji R (2023) Parametric Investigation of Similar TiAl6V4 and AA2024 Rotary Friction Weld Joints Using Taguchi-L9 Array Method. Iran J Mater Sci Eng 20:1–11. https://doi.org/10.22068/ijmse.3121

    Article  Google Scholar 

  23. ISO E (2016) 6892-1: 2016 Metallic materials-Tensile testing-Part 1: Method of test at room temperature (ISO 6892-1: 2016), European Committee for Standardization

  24. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583. https://doi.org/10.1557/JMR.1992.1564

    Article  Google Scholar 

  25. Rossi S, Volgare L, Perrin-Pellegrino C et al (2020) Dual Electrochemical Treatments to Improve Properties of Ti6Al4V Alloy. Mater 13:1–16. https://doi.org/10.3390/ma13112479

    Article  Google Scholar 

  26. Kherrouba N, Bouabdallah M, Badji R et al (2016) Beta to alpha transformation kinetics and microstructure of Ti-6Al-4V alloy during continuous cooling. Mater Chem Phys 181:462–469. https://doi.org/10.1016/j.matchemphys.2016.06.082

    Article  Google Scholar 

  27. Mondolfo LF (2013) Aluminum alloys: structure and properties. Elsevier, London, England, pp 693–757

  28. Khan IN, Starink MJ, Yan JL (2008) A model for precipitation kinetics and strengthening in Al–Cu–Mg alloys. Mater Sci Eng A 472:66–74. https://doi.org/10.1016/j.msea.2007.03.033

    Article  Google Scholar 

  29. Yumak N, Aslantaş K (2020) A review on heat treatment efficiency in metastable β titanium alloys: the role of treatment process and parameters. J Mater Res Tech 9:15360–15380. https://doi.org/10.1016/j.jmrt.2020.10.088

    Article  Google Scholar 

  30. Ambriz RR, Jaramillo D (2014) Mechanical behavior of precipitation hardened aluminum alloys welds. Light Met Alloy Appl 1:2–5. https://doi.org/10.5772/58418

    Article  Google Scholar 

  31. Li P, Wang S, Xia Y et al (2020) Inhomogeneous microstructure and mechanical properties of rotary friction welded AA2024 joints. J Mater Res Technol 9:5749–5760. https://doi.org/10.1016/j.jmrt.2020.03.100

    Article  Google Scholar 

  32. Rafi HK, Ram GJ, Phanikumar G et al (2010) Microstructure and tensile properties of friction welded aluminum alloy AA7075-T6. Mater Des 1980–2015(31):2375–2380. https://doi.org/10.1016/j.matdes.2009.11.065

    Article  Google Scholar 

  33. Li P, Li J, Li X et al (2015) A study of the mechanisms involved in initial friction process of continuous drive friction welding. J Adhes Sci Technol 29:1246–1257. https://doi.org/10.1080/01694243.2015.1022499

    Article  Google Scholar 

  34. Fukumoto S, Tsubakino H, Okita K et al (1999) Friction welding process of 5052 aluminium alloy to 304 stainless steel. Mater Sci Technol 15:1080–1086. https://doi.org/10.1179/026708399101506805

    Article  Google Scholar 

  35. Zhao S, Wang M, Kou S et al (2020) Realization of ODS-Cu/T91 Tube-to-tube Joining with Rotary Friction Welding. Fus Eng Des 158:1–6. https://doi.org/10.1016/j.fusengdes.2020.111699

    Article  Google Scholar 

  36. Dressler U, Biallas G, Mercado UA (2009) Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3. Mater Sci Eng A 526:113–117. https://doi.org/10.1016/j.msea.2009.07.006

    Article  Google Scholar 

  37. Peng G, Ma Y, Hu J et al (2018) Nanoindentation hardness distribution and strain field and fracture evolution in dissimilar friction stir-welded AA 6061-AA 5A06 aluminum alloy joints. Adv Mater Sci Eng 1–12. https://doi.org/10.1155/2018/4873571

  38. Kolařík L, Kolaříková M, Vondrouš P (2014) Mechanical properties of interface of heterogeneous diffusion welds of titanium and austenitic steel. Key Eng Mater 586:178–181. https://doi.org/10.4028/www.scientific.net/KEM.586.178

    Article  Google Scholar 

  39. Qin PT, Damodaram R, Maity T et al (2019) Prashanth, Friction welding of electron beam melted Ti-6Al-4V. Mater Sci Eng A 761:1–6. https://doi.org/10.1016/j.msea.2019.138045

    Article  Google Scholar 

  40. US Department of Defense (1974) Military Handbook: Titanium and Titanium Alloys. Department of Defense, Washington, USA

    Google Scholar 

  41. Combres Y, Champin B (1995) Traitements thermiques des alliages de titane. Techniques de l'Ingénieur, MD2 M1335

  42. Combres Y (1999) Popriétés du titane et de ses alliages. Techniques de l'Ingénieur, MB5 M557

  43. Combres Y (1999) Mise en forme des alliages de titane. Techniques de l'Ingénieur, MC1 M3160

  44. Robert Y (2007) Simulation numérique du soudage du TA6V par laser YAG impulsionnel : caractérisation expérimentale et modélisation des aspects thermomécaniques associés à ce procédé. PhD thesis, Ecole nationale supérieure des Mines, Paris

  45. Leitão C, Louro R, Rodrigues DM et al (2012) Analysis of high temperature plastic behaviour and its relation with weldability in friction stir welding for aluminium alloys AA5083-H111 and AA6082-T6. Mater Des 402:402–409. https://doi.org/10.1016/j.matdes.2012.01.031

    Article  Google Scholar 

  46. Aydin H, Tutar M, Durmuş A et al (2012) Effect of welding parameters on tensile properties and fatigue behavior of friction stir welded 2014–T6 aluminum alloy. Trans Indian Inst Metal 65:21–30. https://doi.org/10.1007/s12666-011-0069-6

    Article  Google Scholar 

  47. Mimouni O, Badji R, Kouadri-David A et al (2019) Microstructure and mechanical behavior of friction-stir-welded 2017A–T451 aluminum alloy. Trans Indian Inst Metal 72:1853–1868. https://doi.org/10.1007/s12666-019-01663-7

    Article  Google Scholar 

  48. Humphreys FJ, Hatherly M (2004) Recrystallization and Related Annealing Phenomena. Elsevier, Oxford, England

    Google Scholar 

  49. Heinz B, Skrotzki B (2002) Characterization of a friction-stir-welded aluminum alloy 6013. Metall Mater Trans B 33:489–498. https://doi.org/10.1007/s11663-002-0059-5

    Article  Google Scholar 

  50. Su JQ, Nelson TW, Mishra R et al (2003) Microstructural investigation of friction stir welded 7050–T651 aluminium. Acta Mater 51:713–729. https://doi.org/10.1016/S1359-6454(02)00449-4

    Article  Google Scholar 

  51. Jata K, Semiatin S (2000) Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scr Mater 43:743–749. https://doi.org/10.1016/S1359-6462(00)00480-2

    Article  Google Scholar 

  52. Geng P, Qin G, Zhou J et al (2019) Numerical and experimental investigation on friction welding of austenite stainless steel and middle carbon steel. J Manuf Process 47:83–97. https://doi.org/10.1016/j.jmapro.2019.09.016

    Article  Google Scholar 

  53. Jin F, Li J, Du Y (2019) Numerical simulation based upon friction coefficient model on thermomechanical coupling in rotary friction welding corresponding with coronabond evolution. J Manuf Process 45:595–602. https://doi.org/10.1016/j.jmapro.2019.08.001

    Article  Google Scholar 

  54. Li P, Wang S, Dong H et al (2021) Effect of inhomogeneous microstructure evolution on the mechanical properties and corrosion behavior of rotary friction welded AA2024 joints. Mater Charact 178:1–14. https://doi.org/10.1016/j.matchar.2021.111306

    Article  Google Scholar 

  55. Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc 64:747–753. https://doi.org/10.1088/0370-1301/64/9/303

    Article  Google Scholar 

  56. Sasmito A, Ilman MN, Iswanto PT et al (2022) Effect of Rotational Speed on Static and Fatigue Properties of Rotary Friction Welded Dissimilar AA7075/AA5083 Aluminium Alloy Joints. Metal 12:1–24. https://doi.org/10.3390/met12010099

    Article  Google Scholar 

  57. Avettand-Fenoel MN, Nagaoka T, Fujii H et al (2018) Characterization of WC/12Co cermet–steel dissimilar friction stir welds. J Manuf Process 31:139–155. https://doi.org/10.1016/j.jmapro.2017.11.012

    Article  Google Scholar 

  58. Luo JG, Acoff VL (2000) Interfacial reactions of titanium and aluminum during diffusion welding. Weld J 79:239–243

    Google Scholar 

  59. Hynes NRJ, Velu PS (2018) Effect of rotational speed on Ti-6Al-4V-AA 6061 friction welded joints. J Manuf Process 32:288–297. https://doi.org/10.1016/j.jmapro.2018.02.014

    Article  Google Scholar 

  60. Wang GL, Li JL, Wang WL et al (2018) Rotary friction welding on dissimilar metals of aluminum and brass by using pre-heating method. Int J Adv Manuf Technol 99:1293–1300. https://doi.org/10.1007/s00170-018-2572-y

    Article  Google Scholar 

  61. Akinlabi ET, Mahamood RM (2020) Solid-state welding: friction and friction stir welding processes. Springer International Publishing, New York, USA, pp 693–757

  62. Vairis A, Papazafeiropoulos G, Tsainis AM (2016) A comparison between friction stir welding, linear friction welding and rotary friction welding. Adv Manuf 4:296–304. https://doi.org/10.1007/s40436-016-0163-4

    Article  Google Scholar 

  63. Kar A, Kailas SV, Suwas S (2019) Effect of mechanical mixing in dissimilar friction stir welding of aluminum to titanium with zinc interlayer. Trans Indian Inst Metal 72:1533–1536. https://doi.org/10.1007/s12666-019-01643-x

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houssem Eddine Lakache.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakache, H.E., Badji, R., May, A. et al. Effect of friction time on the metallurgical behavior and mechanical properties of similar AA2024 and dissimilar AA2024/TA6V rotary friction welds. Int J Adv Manuf Technol 133, 835–849 (2024). https://doi.org/10.1007/s00170-024-13755-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13755-w

Keywords

Navigation