Skip to main content
Log in

Application of robotic manipulator technology and its relation to additive manufacturing process — a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This scientific paper provides a comprehensive overview of the current state of research concerning the application of additive manufacturing (AM) technology, especially the fused filament fabrication (FFF) and fused granular fabrication (FGF) methods, where robotic manipulator systems are applied in fabrication processes. To achieve this, a Systematic Literature Review (SLR) was conducted to identify, select, and evaluate the most relevant research. A total of 63 papers sourced from the most relevant scientific database covering the period from 2019 to December 2023 were thoroughly analyzed and synthesized. The examination, analysis, and assessment of these papers provide insights about the integration of the AM processes with robot manipulator technology, presenting the types of polymers, blends, and polymeric matrix composites that are processed using this advanced technology. This paper highlights and discusses current gaps in this area and proposes future research directions, emphasizing the potential enhancements in flexibility, quality, consistency, productivity, safety, and cost-effectiveness in AM facilitated by robot-assisted systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All information, figures, and tables are in the manuscript. It will not be necessary to provide other data and materials.

References

  1. Othman F, Bahrin MA, Azli N (2016) Industry 4.0: a review on industrial automation and robotic. J Teknol 78(6–13):137–143

    Google Scholar 

  2. Zheng, P, Wang, H, Sang, Z, Zhong, RY, Liu, Y, Liu, C, ... Xu, X (2018) Smart manufacturing systems for Industry 4.0: conceptual framework, scenarios, and future perspectives. Frontiers of Mechanical Engineering, 13, 137–150. https://doi.org/10.1007/s11465-018-0499-5

  3. Van der Aalst WM, Bichler M, Heinzl A (2018) Robotic process automation. Bus Inf Syst Eng 60:269–272

    Article  Google Scholar 

  4. Urhal P, Weightman A, Diver C, Bartolo P (2019) Robot assisted additive manufacturing: a review. Robot Comput-Integrated Manufact 59:335–345

    Article  Google Scholar 

  5. Urhal P, Weightman A, Diver C, Bartolo P (2019) Robot assisted additive manufacturing: a review. Robot Comput Integr Manuf 59:335–345. https://doi.org/10.1016/J.RCIM.2019.05.005

    Article  Google Scholar 

  6. Bogers M, Hadar R, Bilberg A (2016) Additive manufacturing for consumer-centric business models: implications for supply chains in consumer goods manufacturing. Technol Forecast Soc Chang 102:225–239

    Article  Google Scholar 

  7. Wulle F, Coupek D, Schäffner F, Verl A, Oberhofer F, Maier T (2017) Workpiece and machine design in additive manufacturing for multi-axis fused deposition modeling. Procedia Cirp 60:229–234

    Article  Google Scholar 

  8. Ahmad R, Plapper P (2016) Safe and automated assembly process using vision assisted robot manipulator. Procedia Cirp 41:771–776. https://doi.org/10.1016/j.procir.2015.12.129

    Article  Google Scholar 

  9. Morioka M, Sakakibara S (2010) A new cell production assembly system with human–robot cooperation. CIRP Ann 59(1):9–12

    Article  Google Scholar 

  10. Neto, P (2013) Off-line programming and simulation from CAD drawings: robot-assisted sheet metal bending. In: IECON 2013–39th annual conference of the IEEE industrial electronics society. IEEE, pp 4235–4240. https://doi.org/10.1109/IECON.2013.6699815

  11. Siemasz R, Tomczuk K, Malecha Z (2020) 3D printed robotic arm with elements of artificial intelligence. Procedia Comput Sci 176:3741–3750. https://doi.org/10.1016/J.PROCS.2020.09.013

    Article  Google Scholar 

  12. Gibson, I, Rosen D, Stucker B (2015) Development of additive manufacturing technology. P. 19–42 em Additive Manufacturing Technologies. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4939-2113-3_2

  13. Jiang R, Kleer R, Piller FT (2017) Predicting the future of additive manufacturing: a Delphi study on economic and societal implications of 3D printing for 2030. Technol Forecast Soc Chang 117:84–97. https://doi.org/10.1016/j.techfore.2017.01.006

    Article  Google Scholar 

  14. Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, Wang CCL, Shin YC, Zhang S, Zavattieri PD (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89. https://doi.org/10.1016/j.cad.2015.04.001

    Article  Google Scholar 

  15. Pham DT, Gault RS (1998) A comparison of rapid prototyping technologies. Int J Mach Tools Manuf 38(10–11):1257–1287. https://doi.org/10.1016/S0890-6955(97)00137-5

    Article  Google Scholar 

  16. Thompson MK, Moroni G, Vaneker T, Georges Fadel R, Campbell I, Gibson I, Bernard A, Schulz J, Graf P, Ahuja B, Martina F (2016) Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann 65(2):737–760. https://doi.org/10.1016/j.cirp.2016.05.004

    Article  Google Scholar 

  17. Tang S-Y, Yang Li, Fan Z-T, Jiang W-M, Liu X-W (2021) A review of additive manufacturing technology and its application to foundry in China. China Foundry 18(4):249–264. https://doi.org/10.1007/s41230-021-1003-0

    Article  Google Scholar 

  18. Shi, Yuan, Xiaotian (Dennis) Wu, Paydarfar JA, Halter RJ (2021) Imaging-compatible oral retractor system for use in image-guided transoral robotic surgery. P. 4 em Medical Imaging 2021: Image-Guided Procedures, Robotic Interventions, and Modeling, organizado por C. A. Linte e J. H. Siewerdsen. SPIE

  19. Alrashoudi AA, Albalawi HI, Aldoukhi AH, Moretti M, Bilalis P, Abedalthagafi M, Hauser C (2021) Fabrication of a lateral flow assay for rapid in-field detection of COVID-19 antibodies using additive manufacturing printing technology. Int J Bioprinting 7(4):399. https://doi.org/10.18063/ijb.v7i4.399

    Article  Google Scholar 

  20. Lanzolla, AML, Attivissimo F, Percoco G, Ragolia MA, Stano G, Di Nisio EA (2022) Additive manufacturing for sensors: piezoresistive strain gauge with temperature compensation. Appl Sci (Switzerland) 12(17). https://doi.org/10.3390/app12178607

  21. Hu, C, Qing Hua Q (2020) Advances in fused deposition modeling of discontinuous fiber/polymer composites. Current Opinion in Solid State and Materials Science 24(5). https://doi.org/10.1016/j.cossms.2020.100867

  22. ASTM (2012) Designation F2792−12a: Standard Terminology for Additive Manufacturing Technologies (Withdrawn 2015). West Conshohocken, PA: ASTM International. https://doi.org/10.1520/F2792-12A

  23. ASTM International (2021) Additive Manufacturing, Design, Functionally Graded Additive Manufacturing. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428–2959: ASTM International

  24. Agarwala MK, Jamalabad VR, Langrana NA, Safari A, Whalen PJ, Danforth SC (1996) Structural quality of parts processed by fused deposition. Rapid Prototyp J 2(4):4–19.  https://doi.org/10.1108/1355254961073234

  25. Magnoni P, Rebaioli L, Fassi I, Pedrocchi N, Tosatti LM (2017) Robotic AM system for plastic materials: tuning and on-line adjustment of process parameters. Procedia Manuf 11:346–354.  https://doi.org/10.1016/j.promfg.2017.07.117

  26. Walia, K, Khan, , Breedon, P (2021) Polymer-based additive manufacturing: process optimisation for low-cost industrial robotics manufacture. Polymers, 13(16). https://doi.org/10.3390/polym13162809

  27. Liu G, Zhang X, Chen X, He Y, Cheng L, Huo M, Yin J, Hao F, Chen S,  Wang P, Yi S, Wan L, Mao Z, Chen Z, Wang X, Cao Z, Lu J (2021) Additive manufacturing of structural materials. Adv Mater Sci Eng: R: Reports 145:100596. https://doi.org/10.1016/j.mser.2020.100596

  28. Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8(3):215–243. https://doi.org/10.1007/s11465-013-0248-8

  29. Wang S, Badarinath R, Lehtihet E-A, Prabhu V (2017) Evaluation of additive manufacturing processes in fabrication of personalized robot. Int J Autom Technol 11:29–37. https://doi.org/10.20965/ijat.2017.p0029

    Article  Google Scholar 

  30. Li L, Sun Q, Bellehumeur C, Gu P (2002) Composite modeling and analysis for fabrication of FDM prototypes with locally controlled properties. J Manuf Process 4(2):129–141. https://doi.org/10.1016/S1526-6125(02)70139-4

  31. Rebaioli L, Magnoni P, Fassi I, Pedrocchi N, Molinari Tosatti L (2019) Process parameters tuning and online re-slicing for robotized additive manufacturing of big plastic objects. Robot Comput-Integrated Manufact 55:55–64. https://doi.org/10.1016/J.RCIM.2018.07.012

    Article  Google Scholar 

  32. Yaragalla S, Zahid M, Panda JK, Tsagarakis N, Cingolani R, Athanassiou A (2021) Comprehensive enhancement in thermomechanical performance of melt-extruded PEEK filaments by Graphene incorporation. Polymers 13(9):1425. https://doi.org/10.3390/polym13091425

  33. Felber SO, Aburaia M, Wöber W, Lackner M (2021) Parameter optimization for the 3D print of thermo-plastic pellets with an industrial robot, pp 236–247.  https://doi.org/10.1007/978-3-030-62784-3_20

  34. İpekçi A, Ekici B (2022) Effect of fiber set-up and density on mechanical behavior of robotic 3D-printed composites. Emerg Mat Res 11(1):160–166. https://doi.org/10.1680/jemmr.21.00120

  35. Nieto DM, López VC, Molina SI (2018) Large-format polymeric pellet-based additive manufacturing for the naval industry. Addit Manuf 23:79–85. https://doi.org/10.1016/j.addma.2018.07.012

    Article  Google Scholar 

  36. Mason MT (2012) Creation myths: the beginnings of robotics research. IEEE Robot Autom Mag 19:72–77

    Article  Google Scholar 

  37. Hokayem PF, Spong MW (2006) Bilateral teleoperation: an historical survey. Automatica 42(12):2035–2057

    Article  MathSciNet  Google Scholar 

  38. Sheridan TB (1989) Telerobotics Automatica 25(4):487–507

    Article  Google Scholar 

  39. Devol, JGC (1961) Programmed article transfer. US Patent 2,988,237, 13 June 1961. https://patents.google.com/patent/US2988237A/en

  40. Adler JR Jr, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL (1997) The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 69(1–4):124–128

    Article  Google Scholar 

  41. Paul, RP (1981) Robot manipulators: mathematics, programming, and control: the computer control of robot manipulators. Richard Paul

  42. Vukobratovic M, Potkonjak V (1982) Dynamics of manipulated robots: theory and application. Springer-Verlag

    Book  Google Scholar 

  43. Kube CR, Zhang H (1993) Collective robotics: from social insects to robots. Adapt Behav 2(2):189–218

    Article  Google Scholar 

  44. Werfel J, Petersen K, Nagpal R (2014) Designing collective behavior in a termite-inspired robot construction team. Science 343(6172):754–758

    Article  Google Scholar 

  45. Borst, C, Wimbock, T, Schmidt, F, Fuchs, M, Brunner, B, Zacharias, F, Giordano, PR, Konietschke, R, Sepp, W, Fuchs, S, Rink, C (2009) May. Rollin’justin-mobile platform with variable base. In 2009 IEEE International Conference on Robotics and Automation (pp. 1597–1598). IEEE

  46. Brock, O., Park, J. and Toussaint, M., 2016. Mobility and manipulation. Springer Handbook of Robotics, pp.1007–1036. https://doi.org/10.1007/978-3-319-32552-1_40

  47. Ernst, HA (1962), May. MH-1, a computer-operated mechanical hand. In Proceedings of the May 1–3, 1962, spring joint computer conference (pp. 39–51)

Review References

  1. Khatib O, Yokoi K, Brock O, Chang K, Casal A (1999) Robots in human environments: basic autonomous capabilities. The Int J Robot Res 18(7):684–696

    Article  Google Scholar 

  2. Mason MT (2018) Toward robotic manipulation. Annual Rev Control, Robot Autonomous Syst 1:1–28

    Article  Google Scholar 

  3. Bhatt PM, Malhan RK, Shembekar AV, Yoon YJ, Gupta SK (2020) Expanding capabilities of additive manufacturing through use of robotics technologies: a survey. Addit Manuf 31:100933

    Google Scholar 

  4. Shembekar AV, Yoon YJ, Kanyuck A, Gupta SK (2019) Generating robot trajectories for conformal three-dimensional printing using nonplanar layers. J Comput Inf Sci Eng 19(3):031011

    Article  Google Scholar 

  5. Shembekar, AV, Yoon, YJ, Kanyuck, A, Gupta, SK (2019) Generating robot trajectories for conformal three-dimensional printing using nonplanar layers. J Comput Inf Sci Eng, 19(3). https://doi.org/10.1115/1.4043013

  6. Ishak IB, Larochelle P (2019) MotoMaker: a robot FDM platform for multi-plane and 3D lattice structure printing. Mech Based Des Struct Mach 47(6):703–720. https://doi.org/10.1080/15397734.2019.1615943

    Article  Google Scholar 

  7. Isa MA, Lazoglu I (2019) Five-axis additive manufacturing of freeform models through buildup of transition layers. J Manuf Syst 50:69–80

    Article  Google Scholar 

  8. Isa MA, Lazoglu I (2019) Five-axis additive manufacturing of freeform models through buildup of transition layers. J Manuf Syst 50:69–80. https://doi.org/10.1016/J.JMSY.2018.12.002

    Article  Google Scholar 

  9. Bueno A, Godinho Filho M, Frank AG (2020) Smart production planning and control in the Industry 4.0 context: a systematic literature review. Comput Ind Eng 149:106774. https://doi.org/10.1016/j.cie.2020.106774

  10. Núñez-Merino M, Maqueira-Marín JM, Moyano-Fuentes J, Martínez-Jurado PJ (2020) Information and digital technologies of industry 4.0 and lean supply chain management: a systematic literature review. Int J Prod Res 58(16):5034–5061. https://doi.org/10.1080/00207543.2020.1743896

  11. International Federal Robotics (2016) World robotics report 2016. Rep., Int. Fed. Robot., Frankfurt am Main, Germany

  12. Scaffaro R, Maio A, Gulino EF, Alaimo G, Morreale M (2021) Green composites based on pla and agricultural or marine waste prepared by fdm. Polymers 13(9):1–17. https://doi.org/10.3390/polym13091361

    Article  Google Scholar 

  13. Mohan D, Bakir AN, Sajab MS, Bakarudin SB, Mansor NN, Roslan R, Kaco H (2021) Homogeneous distribution of lignin/graphene fillers with enhanced interlayer adhesion for 3D printing filament. Polym Compos 42(5):2408–2421. https://doi.org/10.1002/pc.25987

    Article  Google Scholar 

  14. Potnuru A, Tadesse Y (2019) Investigation of polylactide and carbon nanocomposite filament for 3D printing. Progress in Additive Manufacturing 4(1):23–41. https://doi.org/10.1007/s40964-018-0057-z

    Article  Google Scholar 

  15. Horta JF, Simões FJP, Mateus A (2018) Large scale additive manufacturing of eco-composites. IntJ Mater Form 11(3):375–380. https://doi.org/10.1007/s12289-017-1364-5

    Article  Google Scholar 

  16. Kubalak JR, Wicks AL, Williams CB (2019) Exploring multi-axis material extrusion additive manufacturing for improving mechanical properties of printed parts. Rapid Prototyping J 25(2):356–362. https://doi.org/10.1108/RPJ-02-2018-0035

    Article  Google Scholar 

  17. Raspall F, Velu R, Vaheed NM (2019) Fabrication of complex 3D composites by fusing automated fiber placement (AFP) and additive manufacturing (AM) technologies. Adv Manufact: Polymer Composites Sci 5(1):6–16. https://doi.org/10.1080/20550340.2018.1557397

    Article  Google Scholar 

  18. Khan Hetal Parmar Tayyab, Tucci F, Umer R, Carlone P (2022) Advanced robotics and additive manufacturing of composites: towards a new era in Industry 4.0. Mater Manufact Processes 37(5):483–517. https://doi.org/10.1080/10426914.2020.1866195

    Article  Google Scholar 

  19. Jain SK, Tadesse Y (2019) Fabrication of polylactide/carbon nanopowder filament using melt extrusion and filament characterization for 3D printing. Int J Nanosci 18(5):1–4. https://doi.org/10.1142/S0219581X18500266

    Article  Google Scholar 

  20. Nadgorny M, Ameli A (2018) Functional polymers and nanocomposites for 3D printing of smart structures and devices [Review-article]. ACS Appl Mater Interfaces 10(21):17489–17507. https://doi.org/10.1021/acsami.8b01786

    Article  Google Scholar 

  21. Zhang J, Vasiliauskaite E, De Kuyper A, De Schryver C, Vogeler F, Desplentere F, Ferraris E (2022) Temperature analyses in fused filament fabrication: from filament entering the hot-end to the printed parts. 3D Printing Additive Manufact 9(2):132–142. https://doi.org/10.1089/3dp.2020.0339

    Article  Google Scholar 

  22. Velu R, Vaheed N, Ramachandran MK, Raspall F (2020) Experimental investigation of robotic 3D printing of high-performance thermoplastics (PEEK): a critical perspective to support automated fibre placement process. Int J Adv Manuf Technol 108(4):1007–1025. https://doi.org/10.1007/s00170-019-04623-z

    Article  Google Scholar 

  23. Malik, S, Hagopian, J, Mohite, S, Lintong, C, Stoffels, L, Giannakopoulos, S, Beckett, R, Leung, C, Ruiz, J, Cruz, M, Parker, B (2020) Robotic extrusion of algae-laden hydrogels for large-scale applications. Global Challenges, 4(1). https://doi.org/10.1002/gch2.201900064

  24. Akbari, S, Johansson, J, Johansson, E, Tönnäng, L, Hosseini, S (2022) Large-scale robot-based polymer and composite additive manufacturing: failure modes and thermal simulation. Polymers, 14(9). https://doi.org/10.3390/polym14091731

  25. Suphama P, Maneeratana K, Chancharoen R (2017) Positioning of fused deposition features on primitives. J Eng Appl Sci 12:3818–3823. https://doi.org/10.3923/jeasci.2017.3818.3823

    Article  Google Scholar 

  26. Hertle S, Kleffel T, Wörz A, Drummer D (2020) Production of polymer-metal hybrids using extrusion-based additive manufacturing and electrochemically treated aluminum. Addit Manuf 33(February):101135. https://doi.org/10.1016/j.addma.2020.101135

    Article  Google Scholar 

  27. Chalvin M, Campocasso S, Hugel V, Baizeau T (2020) Layer-by-layer generation of optimized joint trajectory for multi-axis robotized additive manufacturing of parts of revolution. Robot Comput-Integrated Manufact 65(February):101960. https://doi.org/10.1016/j.rcim.2020.101960

    Article  Google Scholar 

  28. Bin Ishak I, Fleming D, Larochelle P (2019) Multiplane fused deposition modeling: a study of tensile strength. Mech Based Des Struct Mach 47(5):583–598. https://doi.org/10.1080/15397734.2019.1596127

    Article  Google Scholar 

  29. Reich MJ, Woern AL, Tanikella NG, Pearce JM (2019) Mechanical properties and applications of recycled polycarbonate particle material extrusion-based additive manufacturing. Materials 12(10):1642. https://doi.org/10.3390/MA12101642

    Article  Google Scholar 

  30. Zi B, Wang N, Qian S, Bao K (2019) Design, stiffness analysis and experimental study of a cable-driven parallel 3D printer. Mech Mach Theory 132:207–222. https://doi.org/10.1016/J.MECHMACHTHEORY.2018.11.003

    Article  Google Scholar 

  31. Krimpenis AA, Papapaschos V, Bontarenko E (2020) HydraX, a 3D printed robotic arm for hybrid manufacturing. Part I: Custom Design. Manufact Assembly Procedia Manufact 51:103–108. https://doi.org/10.1016/J.PROMFG.2020.10.016

    Article  Google Scholar 

  32. Melis G, Sirianni P, Porceddu A, Messere M, Perlo M, Orbech L, Mauro S, Gaidano M, Scimmi LS, Melchiorre M, Perrucci F, Scaltrito L (2020) A novel platform for smart 3d manufacturing system. Int J Automation Technol 14(4):560–567. https://doi.org/10.20965/IJAT.2020.P0560

    Article  Google Scholar 

  33. Zhao J, He N (2020) A mini-review of embedded 3D printing: supporting media and strategies. J Mater Chem B 8(46):10474–10486. https://doi.org/10.1039/D0TB01819H

    Article  Google Scholar 

  34. Nycz, CJ, Strobel, HA, Suqui, K, Grosha, J, Fischer, GS, Rolle, MW (2019) A method for high-throughput robotic assembly of three-dimensional vascular tissue. https://Home.Liebertpub.com/Tea, 25(17–18), 1251–1260. https://doi.org/10.1089/TEN.TEA.2018.0288

  35. Hascoët JY, Authelin O, Rauch M (2020) A generic method to realize long fibers filled and large polymer parts in additive manufacturing. J Mach Eng 20(1):107–116. https://doi.org/10.36897/JME/118217

    Article  Google Scholar 

  36. Bahçegül EG, Bahçegül E, Özkan N (2020) 3D printing of hemicellulosic biopolymers extracted from lignocellulosic agricultural wastes. ACS Appl Polym Mater 2(7):2622–2632. https://doi.org/10.1021/ACSAPM.0C00256

    Article  Google Scholar 

  37. Furet B, Poullain P, Garnier S (2019) 3D printing for construction based on a complex wall of polymer-foam and concrete. Addit Manuf 28:58–64. https://doi.org/10.1016/J.ADDMA.2019.04.002

    Article  Google Scholar 

  38. Liu Z, Knetzer DA, Wang J, Chu F, Lu C, Calvert PD (2022) 3D printing acrylated epoxidized soybean oil reinforced with functionalized cellulose by UV curing. J Appl Polym Sci 139(4):51561. https://doi.org/10.1002/APP.51561

    Article  Google Scholar 

  39. Hsu H, Liu LY, Liu LY, Su YC (2018) 3D manufactured, water-powered soft actuators for orthodontic application. Smart Mater Struct 27(8):084006. https://doi.org/10.1088/1361-665X/AABC2D

    Article  Google Scholar 

  40. Petsiuk A, Lavu B, Dick R, Pearce JM (2022) Waste plastic direct extrusion hangprinter. Inventions 7(3):70. https://doi.org/10.3390/INVENTIONS7030070

    Article  Google Scholar 

  41. Khondoker, MAH, Baheri, N, Sameoto, D (2019) Tendon-driven functionally gradient soft robotic gripper 3D printed with intermixed extrudate of hard and soft thermoplastics. https://Home.Liebertpub.com/3dp, 6(4), 191–203. https://doi.org/10.1089/3DP.2018.0102

  42. Sehhat, MH, Mahdianikhotbesara, A, Yadegari, F (2022) Impact of temperature and material variation on mechanical properties of parts fabricated with fused deposition modelling (FDM) additive manufacturing. https://doi.org/10.21203/RS.3.RS-1079840/V2

  43. Ou, Y, Bao, DW, Zhu, GQ, Luo, D (2022) Additive fabrication of large-scale customizable formwork using robotic fiber-reinforced polymer winding. https://Home.Liebertpub.com/3dp, 9(2), 109–121. https://doi.org/10.1089/3DP.2020.0358

  44. Cheng T, Wood D, Kiesewetter L, Özdemir E, Antorveza K, Menges A (2021) Programming material compliance and actuation: hybrid additive fabrication of biocomposite structures for large-scale self-shaping. Bioinspir Biomim 16(5):055004. https://doi.org/10.1088/1748-3190/AC10AF

    Article  Google Scholar 

  45. Shi B, Shang Y, Zhang P, Cuadros AP, Qu J, Sun B, Gu B, Chou TW, Fu K (2020) Dynamic capillary-driven additive manufacturing of continuous carbon fiber composite. Matter 2(6):1594–1604. https://doi.org/10.1016/J.MATT.2020.04.010

    Article  Google Scholar 

  46. Hack N, Bahar M, Hühne C, Lopez W, Gantner S, Khader N, Rothe T (2021) Development of a robot-based multi-directional dynamic fiber winding process for additive manufacturing using shotcrete 3D printing. Fibers 9(6):39. https://doi.org/10.3390/FIB9060039

    Article  Google Scholar 

  47. Pollák M, Kaščak J, Telišková M, Tkáč J (2019) Design of the 3D printhead with extruder for the implementation of 3d printing from plastic and recycling by industrial robot. TEM Journal 8(3):709–713. https://doi.org/10.18421/TEM83-02

    Article  Google Scholar 

  48. Zhang Y, Qiao J, Zhang G, Tian H, Li L (2022) Artificial intelligence-assisted repair system for structural and electrical restoration using 3D printing. Adv Intell Syst 4(10):2200162. https://doi.org/10.1002/AISY.202200162

    Article  Google Scholar 

  49. Paolini A, Kollmannsberger S, Rank E (2019) Additive manufacturing in construction: a review on processes, applications, and digital planning methods. Addit Manuf 30:100894. https://doi.org/10.1016/J.ADDMA.2019.100894

    Article  Google Scholar 

  50. Zhang, G, Wang, Y, Chen, Z, Xu, X, Dong, K, Xiong, Y (2023) Robot-assisted conformal additive manufacturing for continuous fibre-reinforced grid-stiffened shell structures. Virtual Phys Prototyping, 18(1). https://doi.org/10.1080/17452759.2023.2203695

  51. Leong Z, Chen R, Xu Z, Lin Y, Hu N (2023) Robotic arm three-dimensional printing and modular construction of a meter-scale lattice façade structure. Eng Struct 290:116368. https://doi.org/10.1016/J.ENGSTRUCT.2023.116368

    Article  Google Scholar 

  52. Kim HG, Woodward MA, Sitti M (2023) Avian-inspired perching mechanism for jumping robots. Adv Intell Syst 5(6):2300072. https://doi.org/10.1002/AISY.202300072

    Article  Google Scholar 

  53. Joe S, Bliah O, Magdassi S, Beccai L (2023) Jointless bioinspired soft robotics by harnessing micro and macroporosity. Adv Sci 10(23):2302080. https://doi.org/10.1002/ADVS.202302080

    Article  Google Scholar 

  54. Hernández-Del-Valle M, Schenk C, Echevarría-Pastrana L, Ozdemir B, Dios-Lázaro E, Ilarraza-Zuazo J, Wang DY, Haranczyk M (2023) Robotically automated 3D printing and testing of thermoplastic material specimens. Digital Discovery 2(6):1969–1979. https://doi.org/10.1039/D3DD00141E

    Article  Google Scholar 

  55. Fuge AJ, Herron CW, Beiter BC, Kalita B, Leonessa A (2023) Design, development, and analysis of the lower body of next-generation 3D-printed humanoid research platform: PANDORA. Robotica 41(7):2177–2206. https://doi.org/10.1017/S0263574723000395

    Article  Google Scholar 

  56. Dinakaran VP, Balasubramaniyan MP, Muthusamy S, Panchal H (2023) Performa of SCARA based intelligent 3 axis robotic soft gripper for enhanced material handling. Adv Eng Softw 176:103366. https://doi.org/10.1016/J.ADVENGSOFT.2022.103366

    Article  Google Scholar 

  57. He L, Wang S, Maiolino P (2023) Rubber-like soft lattice structure for anti-ballooning in fluidic elastic soft robots. Adv Eng Mater 25(16):2300534. https://doi.org/10.1002/ADEM.202300534

    Article  Google Scholar 

  58. Deng L, Liu T, Jiang P, Qi A, He Y, Li Y, Yang M, Deng X (2023) Design and testing of bionic-feature-based 3D-printed flexible end-effectors for picking horn peppers. Agronomy 13(9):2231. https://doi.org/10.3390/AGRONOMY13092231

    Article  Google Scholar 

  59. Singh Matharu P, Wang Z, Costello JH, Colin SP, Baughman RH, Tadesse YT (2023) SoJel –a 3D printed jellyfish-like robot using soft materials for underwater applications. Ocean Eng 279:114427. https://doi.org/10.1016/J.OCEANENG.2023.114427

    Article  Google Scholar 

  60. Jurinovs M, Barkane A, Platnieks O, Grase L, Gaidukovs S (2023) Three dimensionally printed biobased electrodes: ionic liquid and single-walled carbon nanotube hybrids in a vegetable oil matrix for soft robotics. ACS Appl Polymer Mater 5(9):7120–7131. https://doi.org/10.1021/ACSAPM.3C01136/SUPPL_FILE/AP3C01136_SI_003.MP4

    Article  Google Scholar 

  61. Liu Z, Li Y, Hao Y, Ma Z, Gu X (2023) Analysis and optimization of laying process parameters of carbon fiber reinforced thermoplastic composites for additive manufacturing using robot. Int J Precis Eng Manuf. https://doi.org/10.1007/S12541-023-00933-1

    Article  Google Scholar 

  62. Dämmer G, Bauer H, Lackner M, Neumann R, Hildebrandt A, Major Z (2023) Design and additive manufacturing of a continuous servo pneumatic actuator. Micromachines 14(8):1622. https://doi.org/10.3390/MI14081622/S1

    Article  Google Scholar 

  63. Wang J, Lin X, Wang R, Lu Y, Zhang L (2023) Self-healing, photothermal-responsive, and shape memory polyurethanes for enhanced mechanical properties of 3D/4D printed objects. Adv Func Mater 33(15):2211579. https://doi.org/10.1002/ADFM.202211579

    Article  Google Scholar 

  64. Malagutti L, Charlon S, Mazzanti V, Mollica F (2023) Effects of printed bead volume on thermal history, polymer degree of crystallinity and mechanical properties in large scale additive manufacturing. J Mater Process Technol 316:117961. https://doi.org/10.1016/J.JMATPROTEC.2023.117961

    Article  Google Scholar 

  65. Xiang, C, Li, Z, Wang, F, Guan, Y, Zhou, W (2023) A 3D printed flexible electroadhesion gripper. Sens Actuators A: Phys, 363. https://doi.org/10.1016/J.SNA.2023.114675

Download references

Acknowledgements

The fourth author would like to thank the National Council for Scientific and Technological Development (CNPq) for his technological productivity fellowship (Process #302814/2021-3) and also, the Sao Paulo Research Foundation (FAPESP) for Grant #2019/22115-0.

Author information

Authors and Affiliations

Authors

Contributions

All author(s) contributed to the construction of the paper as follows:

• Gabriel: search in the scientific databases, organization of the literature review, graphical results, and writing;

• Eduardo: processing of literature and writing;

• Arthur: processing of literature and writing;

• Gustavo: processing of literature, writing and paper review;

• Sidney: processing of literature, writing and paper review.

Corresponding authors

Correspondence to Gabriel Consoni Zutin or Gustavo Franco Barbosa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The author(s) declare that the article was constructed respecting all ethical conditions of publication.

Consent to participate

All author(s) participated in the preparation of the article. In this way, the authors allow their names to be in the article.

Consent for publication

Authors allow publication. All rights will belong to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zutin, G.C., Pulquerio, E.C., Pasotti, A.V. et al. Application of robotic manipulator technology and its relation to additive manufacturing process — a review. Int J Adv Manuf Technol (2024). https://doi.org/10.1007/s00170-024-13710-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00170-024-13710-9

Keywords

Navigation