Skip to main content
Log in

Plateau stress estimation of aluminum foam by machine learning using X-ray computed tomography images

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Aluminum foam is a multifunctional material with excellent shock absorption and heat-insulating properties and is expected to be used in many industrial fields. Since aluminum foam is fabricated by foaming aluminum, variations in pore structures can be observed even when foaming is conducted under the same conditions. Therefore, the establishment of a quality assurance method for the properties of aluminum foam as a product is a major issue. In this study, we attempted to estimate the plateau stress of aluminum foam by machine learning using only X-ray computed tomography (CT) images. A supervised learning neural network model was created using the obtained X-ray CT images of the entire three-dimensional structure and a set of plateau stresses obtained from actual compression tests of the corresponding aluminum foam. Using the created model, we showed that the plateau stress of a new aluminum foam compression specimen, which was different from the aluminum foam compression specimens used for training, can be estimated from X-ray CT images only. That is, it was shown that the mechanical properties of materials with complex geometries, such as foam, can be predicted nondestructively. In the future, it is expected to predict the mechanical properties of the foam by X-ray transmission and visual photographs, which are easier to obtain. We also showed that as the resolution of X-ray CT images improved, the mean error became smaller, namely, the estimation accuracy improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Code availability

Not applicable.

References

  1. García-Moreno F (2016) Commercial applications of metal foams: their properties and production. Materials 9(2):85. https://doi.org/10.3390/ma9020085

    Article  Google Scholar 

  2. Duarte I, Vesenjak M, Vide MJ (2019) Automated continuous production line of parts made of metallic foams. Metals 9(5):531. https://doi.org/10.3390/met9050531

    Article  Google Scholar 

  3. Zhang J, An Y, Ma H (2022) Research progress in the preparation of aluminum foam composite structures. Metals 12(12):2047. https://doi.org/10.3390/met12122047

    Article  Google Scholar 

  4. Chen D, Gao K, Yang J, Zhang L (2023) Functionally graded porous structures: analyses, performances, and applications – A review. Thin-Walled Struct 191:111046. https://doi.org/10.1016/j.tws.2023.111046

    Article  Google Scholar 

  5. Neu TR, Heim K, Seeliger W, Kamm PH, García-Moreno F (2024) Aluminum foam sandwiches: a lighter future for car bodies. JOM. https://doi.org/10.1007/s11837-024-06460-2

  6. Fu W, Li Y (2024) Fabrication, processing, properties, and applications of closed-cell aluminum foams: a review. Materials 17(3):560

    Article  Google Scholar 

  7. Singh P, Sheikh J, Behera BK (2024) Metal-faced sandwich composite panels: a review. Thin-Walled Struct 195:111376. https://doi.org/10.1016/j.tws.2023.111376

    Article  Google Scholar 

  8. Ji C, Huang H, Wang T, Huang Q (2023) Recent advances and future trends in processing methods and characterization technologies of aluminum foam composite structures: a review. J Manuf Process 93:116–152. https://doi.org/10.1016/j.jmapro.2023.03.015

    Article  Google Scholar 

  9. Ashby MF, Evans T, Fleck N, Hutchinson JW, Wadley HNG, Gibson LJ (2000) Metal foams: a design guide. Elsevier Science

    Google Scholar 

  10. Wan T, Liu Y, Zhou C, Chen X, Li Y (2021) Fabrication, properties, and applications of open-cell aluminum foams: a review. J Mater Sci Technol 62:11–24. https://doi.org/10.1016/j.jmst.2020.05.039

    Article  Google Scholar 

  11. Al-Ketan O, Rowshan R, Abu Al-Rub RK (2018) Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Additive Manuf 19:167–183. https://doi.org/10.1016/j.addma.2017.12.006

    Article  Google Scholar 

  12. Liu X, Wada T, Suzuki A, Takata N, Kobashi M, Kato M (2021) Understanding and suppressing shear band formation in strut-based lattice structures manufactured by laser powder bed fusion. Mater Des 199:109416. https://doi.org/10.1016/j.matdes.2020.109416

    Article  Google Scholar 

  13. Guo S, Yue X, Kitazono K (2021) Anisotropic compression behavior of additively manufactured porous titanium with ordered open-cell structures at different temperatures. Mater Trans 62(12):1771–1776. https://doi.org/10.2320/matertrans.MT-M2021149

    Article  Google Scholar 

  14. Toda H, Ohgaki T, Uesugi K, Kobayashi M, Kuroda N, Kobayashi T, Niinomi M, Akahori T, Makii K, Aruga Y (2006) Quantitative assessment of microstructure and its effects on compression behavior of aluminum foams via high-resolution synchrotron X-ray tomography. Metall Mater Trans a-Physical Metall Mater Sci 37A(4):1211–1219. https://doi.org/10.1007/s11661-006-1072-0

    Article  Google Scholar 

  15. Veyhl C, Belova IV, Murch GE, Fiedler T (2011) Finite element analysis of the mechanical properties of cellular aluminium based on micro-computed tomography. Mater Sci Engineering: A 528(13):4550–4555. https://doi.org/10.1016/j.msea.2011.02.031

    Article  Google Scholar 

  16. Kozma I, Zsoldos I (2019) CT-based tests and finite element simulation for failure analysis of syntactic foams. Eng Fail Anal 104:371–378. https://doi.org/10.1016/j.engfailanal.2019.06.003

    Article  Google Scholar 

  17. Duarte I, Fiedler T, Krstulović-Opara L, Vesenjak M (2020) Brief review on experimental and computational techniques for characterization of Cellular metals. Metals 10(6):726. https://doi.org/10.3390/met10060726

    Article  Google Scholar 

  18. Heitor D, Duarte I, Dias-de-Oliveira J (2021) Aluminium alloy foam modelling and prediction of elastic properties using X-ray microcomputed tomography. Metals 11. https://doi.org/10.3390/met11060925

  19. Peng C, Liu C, Liao Z, Yang B, Tang L, Yang L, Jiang Z (2022) Automatic 3D image based finite element modelling for metallic foams and accuracy verification of digital volume correlation. Int J Mech Sci 235:107715. https://doi.org/10.1016/j.ijmecsci.2022.107715

    Article  Google Scholar 

  20. Dargan S, Kumar M, Ayyagari MR, Kumar G (2020) A survey of deep learning and its applications: a new paradigm to machine learning. Arch Comput Methods Eng 27(4):1071–1092. https://doi.org/10.1007/s11831-019-09344-w

    Article  MathSciNet  Google Scholar 

  21. Gibson GM, Johnson SD, Padgett MJ (2020) Single-pixel imaging 12 years on: a review. Opt Express 28(19):28190–28208. https://doi.org/10.1364/oe.403195

    Article  Google Scholar 

  22. Dong S, Wang P, Abbas K (2021) A survey on deep learning and its applications. Comput Sci Rev 40:100379. https://doi.org/10.1016/j.cosrev.2021.100379

    Article  MathSciNet  Google Scholar 

  23. Sun H, Burton HV, Huang H (2021) Machine learning applications for building structural design and performance assessment: state-of-the-art review. J Building Eng 33:101816. https://doi.org/10.1016/j.jobe.2020.101816

    Article  Google Scholar 

  24. Abdar M, Pourpanah F, Hussain S, Rezazadegan D, Liu L, Ghavamzadeh M, Fieguth P, Cao X, Khosravi A, Acharya UR, Makarenkov V, Nahavandi S (2021) A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inform Fusion 76:243–297. https://doi.org/10.1016/j.inffus.2021.05.008

    Article  Google Scholar 

  25. Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L (2021) Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 8(1):53. https://doi.org/10.1186/s40537-021-00444-8

    Article  Google Scholar 

  26. Qiu Z, Sugio K, Sasaki G (2021) Classification of microstructures of Al–Si casting alloy in different cooling rates with machine learning technique. Mater Trans 62(6):719–725. https://doi.org/10.2320/matertrans.MT-MBW2020002

    Article  Google Scholar 

  27. Suzuki A, Shiba Y, Ibe H, Takata N, Kobashi M (2022) Machine-learning assisted optimization of process parameters for controlling the microstructure in a laser powder bed fused WC/Co cemented carbide. Additive Manuf 59:103089. https://doi.org/10.1016/j.addma.2022.103089

    Article  Google Scholar 

  28. Qiu Z, Sugio K, Sasaki G (2023) Microstructural classification of unmodified and strontium modified Al–Si–Mg casting alloys with machine learning techniques. Mater Trans 64(1):171–176. https://doi.org/10.2320/matertrans.MT-MBW2021001

    Article  Google Scholar 

  29. Yaseen ZM, Deo RC, Hilal A, Abd AM, Bueno LC, Salcedo-Sanz S, Nehdi ML (2018) Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Adv Eng Softw 115:112–125. https://doi.org/10.1016/j.advengsoft.2017.09.004

    Article  Google Scholar 

  30. Nguyen T, Kashani A, Ngo T, Bordas S (2019) Deep neural network with high-order neuron for the prediction of foamed concrete strength. Computer-Aided Civ Infrastruct Eng 34(4):316–332. https://doi.org/10.1111/mice.12422

    Article  Google Scholar 

  31. Dudzik M, Stręk AM (2020) ANN architecture specifications for modelling of open-cell aluminum under compression. Math Probl Eng 2020:2834317. https://doi.org/10.1155/2020/2834317

    Article  Google Scholar 

  32. Avalos-Gauna E, Zhao YY, Palafox L, Ortiz-Monasterio-Martinez P (2021) Porous metal properties analysis: a machine learning approach. Jom 73(7):2039–2049. https://doi.org/10.1007/s11837-021-04695-x

    Article  Google Scholar 

  33. Rodríguez-Sánchez AE, Plascencia-Mora H (2022) A machine learning approach to estimate the strain energy absorption in expanded polystyrene foams. J Cell Plast 58(3):399–427. https://doi.org/10.1177/0021955x211021014

    Article  Google Scholar 

  34. Ullah HS, Khushnood RA, Farooq F, Ahmad J, Vatin NI, Ewais DYZ (2022) Prediction of compressive strength of sustainable foam concrete using individual and ensemble machine learning approaches. Materials 15(9):3166. https://doi.org/10.3390/ma15093166

    Article  Google Scholar 

  35. Hangai Y, Okada K, Tanaka Y, Matsuura T, Amagai K, Suzuki R, Nakazawa N (2022) Classification of mechanical properties of aluminum foam by machine learning. Mater Trans 63(2):257–260. https://doi.org/10.2320/matertrans.MT-M2021130

    Article  Google Scholar 

  36. JIS-H-7009 (2008) Glossary of terms used in porous metals. Japanese Standards Association

  37. Hangai Y, Ozawa S, Okada K, Tanaka Y, Amagai K, Suzuki R (2023) Machine learning estimation of plateau stress of aluminum foam using X-ray computed tomography images. Materials 16(5):1894. https://doi.org/10.3390/ma16051894

    Article  Google Scholar 

  38. Baumgartner F, Duarte I, Banhart J (2000) Industrialization of powder compact foaming process. Adv Eng Mater 2(4):168–174. https://doi.org/10.1002/(SICI)1527-2648::AID-ADEM168>3.0.CO;2-O

    Article  Google Scholar 

  39. Duarte I, Banhart J (2000) A study of aluminium foam formation - kinetics and microstructure. Acta Mater 48(9):2349–2362. https://doi.org/10.1016/S1359-6454(00)00020-3

    Article  Google Scholar 

  40. Hangai Y, Utsunomiya T, Hasegawa M (2010) Effect of tool rotating rate on foaming properties of porous aluminum fabricated by using friction stir processing. J Mater Process Technol 210(2):288–292. https://doi.org/10.1016/j.jmatprotec.2009.09.012

    Article  Google Scholar 

  41. Hangai Y, Takahashi K, Yamaguchi R, Utsunomiya T, Kitahara S, Kuwazuru O, Yoshikawa N (2012) Nondestructive observation of pore structure deformation behavior of functionally graded aluminum foam by X-ray computed tomography. Mater Sci Eng A 556:678–684. https://doi.org/10.1016/j.msea.2012.07.047

    Article  Google Scholar 

  42. Hangai Y, Amagai K, Omachi K, Tsurumi N, Utsunomiya T, Yoshikawa N (2018) Forming of aluminum foam using steel mesh as die during foaming of precursor by optical heating. Opt Laser Technol 108:496–501. https://doi.org/10.1016/j.optlastec.2018.07.016

    Article  Google Scholar 

  43. Hangai Y, Masuda A, Suzuki R, Aoki Y, Matsubara M, Fujii H (2023) Easy dismantling and separation of friction stir-welded steel and aluminum by foaming. Int J Adv Manuf Technol 126:561–568. https://doi.org/10.1007/s00170-023-11139-0

    Article  Google Scholar 

  44. JIS-H-7902 (2016) Method for compressive test of porous metals. Japanese Standards Association

  45. Chlap P, Min H, Vandenberg N, Dowling J, Holloway L, Haworth A (2021) A review of medical image data augmentation techniques for deep learning applications. J Med Imaging Radiat Oncol 65(5):545–563. https://doi.org/10.1111/1754-9485.13261

    Article  Google Scholar 

  46. Kokol P, Kokol M, Zagoranski S (2022) Machine learning on small size samples: a synthetic knowledge synthesis. Sci Prog 105(1). https://doi.org/10.1177/00368504211029777

  47. Miyoshi T, Itoh M, Akiyama S, Kitahara A (2000) ALPORAS aluminum foam: production process, properties, and applications. Adv Eng Mater 2(4):179–183. https://doi.org/10.1002/(SICI)1527-2648(200004)2:4<179::AID-ADEM179>3.0.CO;2-G

    Article  Google Scholar 

  48. Romano Y, Isidoro J, Milanfar P (2017) RAISR: Rapid and Accurate Image Super Resolution. Ieee Trans Comput Imaging 3(1):110–125. https://doi.org/10.1109/tci.2016.2629284

    Article  MathSciNet  Google Scholar 

  49. Aburaed N, Alkhatib MQ, Marshall S, Zabalza J, Al Ahmad H (2023) A review of spatial enhancement of hyperspectral remote sensing imaging techniques. Ieee J Sel Top Appl Earth Observations Remote Sens 16:2275–2300. https://doi.org/10.1109/jstars.2023.3242048

    Article  Google Scholar 

  50. Zhang Y, Yu H (2018) Convolutional neural network based metal artifact reduction in X-ray computed tomography. IEEE Trans Med Imaging 37(6):1370–1381. https://doi.org/10.1109/TMI.2018.2823083

    Article  Google Scholar 

  51. Han Y, Wu DF, Kim KS, Li QZ (2022) End-to-end deep learning for interior tomography with low-dose x-ray CT. Phys Med Biol 67(11). https://doi.org/10.1088/1361-6560/ac6560

  52. Ziabari A, Venkatakrishnan SV, Snow Z, Lisovich A, Sprayberry M, Brackman P, Frederick C, Bhattad P, Graham S, Bingham P, Dehoff R, Plotkowski A, Paquit V (2023) Enabling rapid X-ray CT characterisation for additive manufacturing using CAD models and deep learning-based reconstruction. Npj Comput Mater 9(1):91. https://doi.org/10.1038/s41524-023-01032-5

    Article  Google Scholar 

  53. Njiti MM, Osman ND, Mansor MS, Rabaiee NA, Abdul Aziz MZ (2024) Potential of metal artifact reduction (MAR) and deep learning-based Reconstruction (DLR) algorithms integration in CT metal artifact correction: a review. Radiat Phys Chem 218:111541. https://doi.org/10.1016/j.radphyschem.2024.111541

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Osamu Kuwazuru of University of Fukui for his insightful comments and discussion.

Funding

This work was financially supported partly by Mitutoyo Association for Science and Technology (MAST) and JST-Mirai Program Grant Number JPMJMI19E5, Japan.

Author information

Authors and Affiliations

Authors

Contributions

Yoshihiko Hangai: conceptualization, project administration, writing—original draft, writing—review and editing

Yuki Sakaguchi: data curation, formal analysis, investigation

Yuma Kitahara: data curation, investigation

Tatsuki Takagi: methodology, resources

Okada Kenji and Tanaka Yuuki: investigation, methodology, resources

Corresponding author

Correspondence to Yoshihiko Hangai.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hangai, Y., Sakaguchi, Y., Kitahara, Y. et al. Plateau stress estimation of aluminum foam by machine learning using X-ray computed tomography images. Int J Adv Manuf Technol (2024). https://doi.org/10.1007/s00170-024-13670-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00170-024-13670-0

Keywords

Navigation