Skip to main content
Log in

A comprehensive review of recent advances in laser powder bed fusion characteristics modeling: metallurgical and defects

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This comprehensive review explores recent advancements in laser powder bed fusion (LPBF) modeling, with a particular focus on metallurgical, temperature, and defect aspects. The study systematically analyzes various modeling methodologies, categorizing them based on characteristics and monitoring approaches. Special attention is given to temperature models, which play a crucial role in capturing the complex thermal dynamics inherent in LPBF processes. Case studies delve into metallurgical modeling, covering aspects such as solidification modes, phase transformations, and morphology. Additionally, the defect analysis section offers a detailed examination of porosity and cracks, highlighting both challenges and advancements in defect mitigation within LPBF. The novelty of this study lies in its meticulous examination of temperature, metallurgical, and defect models, which collectively contribute to a comprehensive understanding of LPBF processes. The application of these models is paramount for optimizing additive manufacturing outcomes. Furthermore, the study not only synthesizes recent trends but also identifies gaps, thus guiding future research endeavors. By emphasizing emerging trends, the review aims to inspire researchers to explore novel avenues, thereby enhancing the applicability of LPBF models. In conclusion, this review consolidates valuable insights, making a significant contribution to the current understanding of LPBF intricacies. Its relevance extends to researchers, practitioners, and enthusiasts in additive manufacturing, providing a foundational resource for ongoing and future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Yadroitsev I, Yadroitsava I, Du Plessis A (2021) Basics of laser powder bed fusion,” in Fundamentals of Laser Powder Bed Fusion of Metals: Elsevier, 15–38

  2. Singh DD, Mahender T, Reddy AR (2021) Powder bed fusion process: a brief review. Mater Today Proc 46:350–355

    Article  Google Scholar 

  3. Manikandan P et al (2022) On the anisotropy in room-temperature mechanical properties of laser powder bed fusion processed Ti6Al4V-ELI alloy for aerospace applications. J Mater Sci 57(21):9599–9618

    Article  Google Scholar 

  4. Weissbach R, Praegla PM, Wall WA, Hart AJ, Meier C (2023) Novel simulation-inspired roller spreading strategies for fine and highly cohesive metal powders. arXiv preprint arXiv:2306.06013

  5. Awad A, Fina F, Goyanes A, Gaisford S, Basit AW (2021) Advances in powder bed fusion 3D printing in drug delivery and healthcare. Adv Drug Deliv Rev 174:406–424

    Article  Google Scholar 

  6. Calignano F, Galati M, Iuliano L (2019) A metal powder bed fusion process in industry: qualification considerations. Machines 7(4):72

    Article  Google Scholar 

  7. Khorasani A, Gibson I, Veetil JK, Ghasemi AH (2020) A review of technological improvements in laser-based powder bed fusion of metal printers. Int J Adv Manuf Technol 108:191–209

    Article  Google Scholar 

  8. Tekoğlu E et al (2023) Strengthening additively manufactured Inconel 718 through in-situ formation of nanocarbides and silicides. Addit Manuf 67:103478

    Google Scholar 

  9. Kim D, Ferretto I, Jeon JB, Leinenbach C, Lee W (2021) Formation of metastable bcc-δ phase and its transformation to fcc-γ in laser powder bed fusion of Fe–Mn–Si shape memory alloy. J Market Res 14:2782–2788

    Google Scholar 

  10. Yaokawa J, Oh-ishi K, Dong S, Hara M, Masutani T, Sato H (2021) Dimensional changes induced by precipitation of supersaturated solid solution Si in selectively laser-melted AlSi10Mg alloy during heat treatment. Mater Charact 182:111533

    Article  Google Scholar 

  11. Knezevic M et al (2021) Thermo-hydrogen refinement of microstructure to improve mechanical properties of Ti–6Al–4V fabricated via laser powder bed fusion. Mater Sci Eng A 809:140980

    Article  Google Scholar 

  12. King WE et al (2015) Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev 2(4)

  13. Everton SK, Hirsch M, Stravroulakis P, Leach RK, Clare AT (2016) Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 95:431–445

    Article  Google Scholar 

  14. Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 83:389–405

    Article  Google Scholar 

  15. Meier C, Penny RW, Zou Y, Gibbs JS, Hart AJ (2017) Thermophysical phenomena in metal additive manufacturing by selective laser melting: fundamentals, modeling, simulation, and experimentation. Ann Rev Heat Transf 20

  16. Grasso M, Colosimo BM (2017) Process defects and in situ monitoring methods in metal powder bed fusion: a review. Meas Sci Technol 28(4):044005

    Article  Google Scholar 

  17. Bhavar V, Kattire P, Patil V, Khot S, Gujar K, Singh R (2017) A review on powder bed fusion technology of metal additive manufacturing. Addit Manuf Handb 251–253

  18. Yan W et al (2018) Modeling process-structure-property relationships for additive manufacturing. Front Mech Eng 13:482–492

    Article  Google Scholar 

  19. Vock S, Klöden B, Kirchner A, Weißgärber T, Kieback B (2019) Powders for powder bed fusion: a review. Prog Addit Manuf 4:383–397

    Article  Google Scholar 

  20. Moges T, Ameta G, Witherell P (2019) A review of model inaccuracy and parameter uncertainty in laser powder bed fusion models and simulations. J Manuf Sci Eng 141(4):040801

    Article  Google Scholar 

  21. Bartlett JL, Li X (2019) An overview of residual stresses in metal powder bed fusion. Addit Manuf 27:131–149

    Google Scholar 

  22. Dowling L, Kennedy J, O’Shaughnessy S, Trimble D (2020) A review of critical repeatability and reproducibility issues in powder bed fusion. Mater Des 186:108346

    Article  Google Scholar 

  23. Kusoglu IM, Gökce B, Barcikowski S (2020) Research trends in laser powder bed fusion of Al alloys within the last decade. Addit Manuf 36:101489

    Google Scholar 

  24. Khan HM, Karabulut Y, Kitay O, Kaynak Y, Jawahir I (2020) Influence of the post-processing operations on surface integrity of metal components produced by laser powder bed fusion additive manufacturing: a review. Mach Sci Technol 25(1):118–176

    Article  Google Scholar 

  25. Tan JHK, Sing SL, Yeong WY (2020) Microstructure modelling for metallic additive manufacturing: a review. Virtual Phys Prototyp 15(1):87–105

    Article  Google Scholar 

  26. Soundararajan B, Sofia D, Barletta D, Poletto M (2021) Review on modeling techniques for powder bed fusion processes based on physical principles. Addit Manuf 47:102336

    Google Scholar 

  27. Kotadia H, Gibbons G, Das A, Howes P (2021) A review of laser powder bed fusion additive manufacturing of aluminium alloys: microstructure and properties. Addit Manuf 46:102155

    Google Scholar 

  28. Colombo-Pulgarín J et al (2021) Beta titanium alloys processed by laser powder bed fusion: a review. J Mater Eng Perform 30(9):6365–6388

    Article  Google Scholar 

  29. Wei C, Li L (2021) Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virtual Phys Prototyp 16(3):347–371

    Article  Google Scholar 

  30. Cooke S, Ahmadi K, Willerth S, Herring R (2020) Metal additive manufacturing: technology, metallurgy and modelling. J Manuf Process 57:978–1003

    Article  Google Scholar 

  31. Grasso M, Remani A, Dickins A, Colosimo BM, Leach RK (2021) In-situ measurement and monitoring methods for metal powder bed fusion: an updated review. Meas Sci Technol 32(11):112001

    Article  Google Scholar 

  32. Sanchez S et al (2021) Powder bed fusion of nickel-based superalloys: a review. Int J Mach Tools Manuf 165:103729

    Article  Google Scholar 

  33. McCann R et al (2021) In-situ sensing, process monitoring and machine control in laser powder bed fusion: a review. Addit Manuf 45:102058

    Google Scholar 

  34. Fiocchi J, Tuissi A, Biffi C (2021) Heat treatment of aluminium alloys produced by laser powder bed fusion: a review. Mater Des 204:109651

    Article  Google Scholar 

  35. Nouri A, Shirvan AR, Li Y, Wen C (2021) Additive manufacturing of metallic and polymeric load-bearing biomaterials using laser powder bed fusion: a review. J Mater Sci Technol 94:196–215

    Article  Google Scholar 

  36. Rometsch PA, Zhu Y, Wu X, Huang A (2022) Review of high-strength aluminium alloys for additive manufacturing by laser powder bed fusion. Mater Des 219:110779

    Article  Google Scholar 

  37. Ahmed N, Barsoum I, Haidemenopoulos G, Al-Rub RA (2022) Process parameter selection and optimization of laser powder bed fusion for 316L stainless steel: a review. J Manuf Process 75:415–434

    Article  Google Scholar 

  38. Agrawal AK, Rankouhi B, Thoma DJ (2022) Predictive process mapping for laser powder bed fusion: a review of existing analytical solutions. Curr Opin Solid State Mater Sci 26(6):101024

    Article  Google Scholar 

  39. Zhao C et al (2022) Laser melting modes in metal powder bed fusion additive manufacturing. Rev Mod Phys 94(4):045002

    Article  Google Scholar 

  40. Depboylu FN, Yasa E, Poyraz Ö, Minguella-Canela J, Korkusuz F, De los Santos López MA (2022) Titanium based bone implants production using laser powder bed fusion technology. J Mater Res Technol 17:1408–1426

    Article  Google Scholar 

  41. Raja A, Cheethirala SR, Gupta P, Vasa NJ, Jayaganthan R (2022) A review on the fatigue behaviour of AlSi10Mg alloy fabricated using laser powder bed fusion technique. J Market Res 17:1013–1029

    Google Scholar 

  42. Vukkum V, Gupta R (2022) Review on corrosion performance of laser powder-bed fusion printed 316L stainless steel: effect of processing parameters, manufacturing defects, post-processing, feedstock, and microstructure. Mater Des 110874

  43. Wang D et al (2022) Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion. Virtual Phys Prototyp 17(2):329–365

    Article  Google Scholar 

  44. Abd-Elaziem W et al (2022) On the current research progress of metallic materials fabricated by laser powder bed fusion process: a review. J Market Res 20:681–707

    Google Scholar 

  45. Chowdhury S et al (2022) Laser powder bed fusion: a state-of-the-art review of the technology, materials, properties & defects, and numerical modelling. J Market Res 20:2109–2172

    Google Scholar 

  46. Volpato GM, Tetzlaff U, Fredel MC (2022) A comprehensive literature review on laser powder bed fusion of Inconel superalloys. Addit Manuf 55:102871

    Google Scholar 

  47. Li K et al (2023) A review of the multi-dimensional application of machine learning to improve the integrated intelligence of laser powder bed fusion. J Mater Process Technol 118032

  48. Taherkhani K, Ero O, Liravi F, Toorandaz S, Toyserkani E (2023) On the application of in-situ monitoring systems and machine learning algorithms for developing quality assurance platforms in laser powder bed fusion: a review. J Manuf Process 99:848–897

    Article  Google Scholar 

  49. Dejene ND, Lemu HG (2023) Current status and challenges of powder bed fusion-based metal additive manufacturing: literature review. Metals 13(2):424

    Article  Google Scholar 

  50. Khorasani M, Gibson I, Ghasemi AH, Hadavi E, Rolfe B (2023) Laser subtractive and laser powder bed fusion of metals: review of process and production features. Rapid Prototyp J 29(5):935–958

    Article  Google Scholar 

  51. Lupi F, Pacini A, Lanzetta M (2023) Laser powder bed additive manufacturing: a review on the four drivers for an online control. J Manuf Process 103:413–429

    Article  Google Scholar 

  52. Martucci A, Aversa A, Lombardi M (2023) Ongoing challenges of laser-based powder bed fusion processing of Al alloys and potential solutions from the literature—a review. Materials 16(3):1084

    Article  Google Scholar 

  53. Liu J, Wei B, Chang H, Li J, Yang G (2023) Review of visual measurement methods for metal vaporization processes in laser powder bed fusion. Micromachines 14(7):1351

    Article  Google Scholar 

  54. Lazar PJL, Subramanian J, Manickam M, Selvaraj VK (2023) Imperfections and computational modeling of lattice structures developed through powder bed fusion–a short review. Mater Today Proc

  55. Zhang Y, Yan W (2023) Applications of machine learning in metal powder-bed fusion in-process monitoring and control: status and challenges. J Intell Manuf 34(6):2557–2580

    Article  Google Scholar 

  56. Miao H et al (2023) Interfacial microstructure, element diffusion, mechanical properties and metallurgical bonding mechanism of 316L-AlSi10Mg multi-material parts fabricated by laser powder bed fusion. J Market Res 26:8351–8365

    Google Scholar 

  57. Serrano-Munoz I et al (2021) On the interplay of microstructure and residual stress in LPBF IN718. J Mater Sci 56:5845–5867

    Article  Google Scholar 

  58. Qin H, Dong Q, Fallah V, Daymond MR (2020) Rapid solidification and non-equilibrium phase constitution in laser powder bed fusion (LPBF) of AlSi10Mg alloy: analysis of nano-precipitates, eutectic phases, and hardness evolution. Metall Mater Trans A 51:448–466

    Article  Google Scholar 

  59. Qin H, Fallah V, Dong Q, Brochu M, Daymond MR, Gallerneault M (2018) Solidification pattern, microstructure and texture development in laser powder bed fusion (LPBF) of Al10SiMg alloy. Mater Charact 145:29–38

    Article  Google Scholar 

  60. Liu F, Hovanski Y, Miles M, Sorensen C, Nelson T (2018) A review of friction stir welding of steels: tool, material flow, microstructure, and properties. J Mater Sci Technol 34(1):39–57

    Article  Google Scholar 

  61. Moon J et al (2020) Isothermal transformation of austenite to ferrite and precipitation behavior in 9Cr-1.5 Mo-1.25 Co-0.1 C-VNb heat-resistant steel. Mater Charact 170:110677

    Article  Google Scholar 

  62. Ladani L, Sadeghilaridjani M (2021) Review of powder bed fusion additive manufacturing for metals. Metals 11(9):1391

    Article  Google Scholar 

  63. Liu R, Liu S, Zhang X (2021) A physics-informed machine learning model for porosity analysis in laser powder bed fusion additive manufacturing. Int J Adv Manuf Technol 113(7–8):1943–1958

    Article  Google Scholar 

  64. Lindström V, Lupo G, Yang J, Turlo V, Leinenbach C (2023) A simple scaling model for balling defect formation during laser powder bed fusion. Addit Manuf 63:103431

    Google Scholar 

  65. Choe J et al (2023) A novel route for predicting the cracking of inoculant-added AA7075 processed via laser powder bed fusion. Addit Manuf 62:103370

    Google Scholar 

  66. Wang W, Ning J, Liang SY (2021) Analytical prediction of balling, lack-of-fusion and keyholing thresholds in powder bed fusion. Appl Sci 11(24):12053

    Article  Google Scholar 

  67. Zhang M et al (2017) Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L: influence of processing parameters. Mater Sci Eng A 703:251–261

    Article  Google Scholar 

  68. Gaikwad A, Giera B, Guss GM, Forien J-B, Matthews MJ, Rao P (2020) Heterogeneous sensing and scientific machine learning for quality assurance in laser powder bed fusion–a single-track study. Addit Manuf 36:101659

    Google Scholar 

  69. Montazeri M, Yavari R, Rao P, Boulware P (2018) In-process monitoring of material cross-contamination defects in laser powder bed fusion. J Manuf Sci Eng 140(11):111001

    Article  Google Scholar 

  70. Harbig J et al (2022) Methodology to determine melt pool anomalies in powder bed fusion of metals using a laser beam by means of process monitoring and sensor data fusion. Materials 15(3):1265

    Article  Google Scholar 

  71. Vlasea ML, Lane B, Lopez F, Mekhontsev S, Donmez A (2015) Development of powder bed fusion additive manufacturing test bed for enhanced real-time process control. in 2015 International Solid Freeform Fabrication Symposium, University of Texas at Austin

  72. Krauss H, Eschey C, Zaeh M (2012) Thermography for monitoring the selective laser melting process,” in 2012 International Solid Freeform Fabrication Symposium, University of Texas at Austin

  73. Chukkan JR, Vasudevan M, Muthukumaran S, Kumar RR, Chandrasekhar N (2015) Simulation of laser butt welding of AISI 316L stainless steel sheet using various heat sources and experimental validation. J Mater Process Technol 219:48–59

    Article  Google Scholar 

  74. Kuryntsev S, Morushkin A, Gilmutdinov AK (2017) Fiber laser welding of austenitic steel and commercially pure copper butt joint. Opt Lasers Eng 90:101–109

    Article  Google Scholar 

  75. Prokhorov AM (2018) Laser heating of metals. CRC Press

  76. Niu Y, Wang Y, Liu X, Zhang C, Zhu S (1998) Laser beam quality factor M2 and its measurement,” in Laser Processing of Materials and Industrial Applications II, vol. 3550: SPIE, pp. 378–382

  77. Singh R et al (2020) Powder bed fusion process in additive manufacturing: an overview. Mater Today Proc 26:3058–3070

    Article  Google Scholar 

  78. Attar H et al (2015) Effect of powder particle shape on the properties of in situ Ti–TiB composite materials produced by selective laser melting. J Mater Sci Technol 31(10):1001–1005

    Article  Google Scholar 

  79. Ferrar B, Mullen L, Jones E, Stamp R, Sutcliffe C (2012) Gas flow effects on selective laser melting (SLM) manufacturing performance. J Mater Process Technol 212(2):355–364

    Article  Google Scholar 

  80. Amado A, Schmid M, Levy G, Wegener K (2011) Advances in SLS powder characterization,” in 2011 International Solid Freeform Fabrication Symposium, University of Texas at Austin

  81. Wang C, Tan X, Tor SB, Lim C (2020) Machine learning in additive manufacturing: state-of-the-art and perspectives. Addit Manuf 36:101538

    Google Scholar 

  82. Tapia G, Elwany A (2014) A review on process monitoring and control in metal-based additive manufacturing. J Manuf Sci Eng 136(6):060801

    Article  Google Scholar 

  83. Holla V, Kopp P, Grünewald J, Wudy K, Kollmannsberger S (2023) Laser beam shape optimization in powder bed fusion of metals. Addit Manuf 72:103609

    Google Scholar 

  84. Kollmannsberger S, Kopp P (2021) On accurate time integration for temperature evolutions in additive manufacturing. GAMM-Mitteilungen 44(4):e202100019

    Article  MathSciNet  Google Scholar 

  85. Masoomi M, Pegues JW, Thompson SM, Shamsaei N (2018) A numerical and experimental investigation of convective heat transfer during laser-powder bed fusion. Addit Manuf 22:729–745

    Google Scholar 

  86. Cheng B, Price S, Lydon J, Cooper K, Chou K (2014) On process temperature in powder-bed electron beam additive manufacturing: model development and validation. J Manuf Sci Eng 136(6):061018

    Article  Google Scholar 

  87. Mishra AK, Kumar A (2023) Development and validation of a material evaporation assisted thermal model for time-efficient calculation of thermal and solidification parameters during laser powder bed fusion process for Ti6Al4V. Addit Manuf 66:103453

    Google Scholar 

  88. Mahmoudi M et al (2018) Multivariate calibration and experimental validation of a 3D finite element thermal model for laser powder bed fusion metal additive manufacturing. Integr Mater Manuf Innov 7:116–135

    Article  Google Scholar 

  89. Momeni K (2021) Sensitivity of laser powder bed fusion additive manufactured HAYNES230 to composition and print parameters. J Market Res 15:6453–6463

    Google Scholar 

  90. Fu C, Guo Y (2014) Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V. J Manuf Sci Eng 136(6):061004

    Article  Google Scholar 

  91. Antony K, Arivazhagan N, Senthilkumaran K (2014) Numerical and experimental investigations on laser melting of stainless steel 316L metal powders. J Manuf Process 16(3):345–355

    Article  Google Scholar 

  92. Romano J, Ladani L, Sadowski M (2015) Thermal modeling of laser based additive manufacturing processes within common materials. Procedia Manuf 1:238–250

    Article  Google Scholar 

  93. Foroozmehr A, Badrossamay M, Foroozmehr E, Golabi SI (2016) Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed. Mater Des 89:255–263

    Article  Google Scholar 

  94. Lee Y, Zhang W (2016) Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion. Addit Manuf 12:178–188

    Google Scholar 

  95. Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45

    Article  Google Scholar 

  96. Promoppatum P, Yao S-C, Pistorius PC, Rollett AD (2017) A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder-bed fusion. Engineering 3(5):685–694

    Article  Google Scholar 

  97. Promoppatum P, Onler R, Yao S-C (2017) Numerical and experimental investigations of micro and macro characteristics of direct metal laser sintered Ti-6Al-4V products. J Mater Process Technol 240:262–273

    Article  Google Scholar 

  98. Criales LE, Arısoy YM, Lane B, Moylan S, Donmez A, Özel T (2017) Predictive modeling and optimization of multi-track processing for laser powder bed fusion of nickel alloy 625. Addit Manuf 13:14–36

    Google Scholar 

  99. Vastola G, Pei Q, Zhang Y-W (2018) Predictive model for porosity in powder-bed fusion additive manufacturing at high beam energy regime. Addit Manuf 22:817–822

    Google Scholar 

  100. Yang Y, Jamshidinia M, Boulware P, Kelly S (2018) Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process. Comput Mech 61:599–615

    Article  Google Scholar 

  101. Philo A et al (2019) A pragmatic continuum level model for the prediction of the onset of keyholing in laser powder bed fusion. Int J Adv Manuf Technol 101:697–714

    Article  Google Scholar 

  102. Kollmannsberger S, Carraturo M, Reali A, Auricchio F (2019) Accurate prediction of melt pool shapes in laser powder bed fusion by the non-linear temperature equation including phase changes: model validity: isotropic versus anisotropic conductivity to capture AM Benchmark Test AMB2018-02. Integr Mater Manuf Innov 8:167–177

    Article  Google Scholar 

  103. Zhang Z et al (2019) 3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity. Opt Laser Technol 109:297–312

    Article  Google Scholar 

  104. Cheng B, Loeber L, Willeck H, Hartel U, Tuffile C (2019) Computational investigation of melt pool process dynamics and pore formation in laser powder bed fusion. J Mater Eng Perform 28:6565–6578

    Article  Google Scholar 

  105. Karayagiz K et al (2019) Numerical and experimental analysis of heat distribution in the laser powder bed fusion of Ti-6Al-4V. IISE Trans 51(2):136–152

    Article  Google Scholar 

  106. Arısoy YM, Criales LE, Özel T (2019) Modeling and simulation of thermal field and solidification in laser powder bed fusion of nickel alloy IN625. Opt Laser Technol 109:278–292

    Article  Google Scholar 

  107. Zheng M et al (2019) A novel method for the molten pool and porosity formation modelling in selective laser melting. Int J Heat Mass Transf 140:1091–1105

    Article  Google Scholar 

  108. Bayat M, Mohanty S, Hattel JH (2019) A systematic investigation of the effects of process parameters on heat and fluid flow and metallurgical conditions during laser-based powder bed fusion of Ti6Al4V alloy. Int J Heat Mass Transf 139:213–230

    Article  Google Scholar 

  109. Mayi YA et al (2019) Laser-induced plume investigated by finite element modelling and scaling of particle entrainment in laser powder bed fusion. J Phys D Appl Phys 53(7):075306

    Article  Google Scholar 

  110. Meng L, Zhang J (2020) Process design of laser powder bed fusion of stainless steel using a Gaussian process-based machine learning model. Jom 72(1):420–428

    Article  MathSciNet  Google Scholar 

  111. Bayat M, Nadimpalli V, Mohanty S, Hattel J (2020) Resolving the effects of local convective heat transfer via adjustment of thermo-physical properties in pure heat conduction simulation of laser powder bed fusion (L-PBF),” in IOP Conference Series: Materials Science and Engineering, vol. 861, no. 1: IOP Publishing, p. 012006

  112. Carraturo M, Jomo J, Kollmannsberger S, Reali A, Auricchio F, Rank E (2020) Modeling and experimental validation of an immersed thermo-mechanical part-scale analysis for laser powder bed fusion processes. Addit Manuf 36:101498

    Google Scholar 

  113. Shahabad SI et al (2020) Heat source model calibration for thermal analysis of laser powder-bed fusion. Int J Adv Manuf Technol 106:3367–3379

    Article  Google Scholar 

  114. Chen Y, Chen H, Chen J, Xiong J, Wu Y, Dong S (2020) Numerical and experimental investigation on thermal behavior and microstructure during selective laser melting of high strength steel. J Manuf Process 57:533–542

    Article  Google Scholar 

  115. Reza Yavari M, Williams RJ, Cole KD, Hooper PA, Rao P (2020) Thermal modeling in metal additive manufacturing using graph theory: experimental validation with laser powder bed fusion using in situ infrared thermography data. J Manuf Sci Eng 142(12):121005

    Article  Google Scholar 

  116. Zhang W, Tong M, Harrison NM (2020) Scanning strategies effect on temperature, residual stress and deformation by multi-laser beam powder bed fusion manufacturing. Addit Manuf 36:101507

    Google Scholar 

  117. Ahsan F, Ladani L (2020) Temperature profile, bead geometry, and elemental evaporation in laser powder bed fusion additive manufacturing process. Jom 72(1):429–439

    Article  Google Scholar 

  118. Zagade P, Gautham B, De A, DebRoy T (2021) Analytical estimation of fusion zone dimensions and cooling rates in part scale laser powder bed fusion. Addit Manuf 46:102222

    Google Scholar 

  119. Jakumeit J et al (2021) Modelling the complex evaporated gas flow and its impact on particle spattering during laser powder bed fusion. Addit Manuf 47:102332

    Google Scholar 

  120. Khorasani M et al (2021) Numerical and analytical investigation on meltpool temperature of laser-based powder bed fusion of IN718. Int J Heat Mass Transf 177:121477

    Article  Google Scholar 

  121. Li E, Wang L, Yu A, Zhou Z (2021) A three-phase model for simulation of heat transfer and melt pool behaviour in laser powder bed fusion process. Powder Technol 381:298–312

    Article  Google Scholar 

  122. Chen Q et al (2021) Elucidating the effect of preheating temperature on melt pool morphology variation in Inconel 718 laser powder bed fusion via simulation and experiment. Addit Manuf 37:101642

    Google Scholar 

  123. Irwin JE, Wang Q, Michaleris PP, Nassar AR, Ren Y, Stutzman CB (2021) Iterative simulation-based techniques for control of laser powder bed fusion additive manufacturing. Addit Manuf 46:102078

    Google Scholar 

  124. Tangestani R, Sabiston T, Chakraborty A, Muhammad W, Yuan L, Martin É (2021) An efficient track-scale model for laser powder bed fusion additive manufacturing: part 1-thermal model. Front Mater 8:753040

    Article  Google Scholar 

  125. Shrestha S, Chou K (2021) A study of transient and steady-state regions from single-track deposition in laser powder bed fusion. J Manuf Process 61:226–235

    Article  Google Scholar 

  126. Lee S, Kim J, Choe J, Kim S-W, Hong J-K, Choi YS (2021) Understanding crack formation mechanisms of Ti–48Al–2Cr–2Nb single tracks during laser powder bed fusion. Met Mater Int 27:78–91

    Article  Google Scholar 

  127. Jia Y, Saadlaoui Y, Roux J-C, Bergheau J-M (2022) Steady-state thermal model based on new dedicated boundary conditions–application in the simulation of laser powder bed fusion process. Appl Math Model 112:749–766

    Article  MathSciNet  Google Scholar 

  128. Kopp P, Rank E, Calo VM, Kollmannsberger S (2022) Efficient multi-level hp-finite elements in arbitrary dimensions. Comput Methods Appl Mech Eng 401:115575

    Article  MathSciNet  Google Scholar 

  129. Viguerie A, Carraturo M, Reali A, Auricchio F (2022) A spatiotemporal two-level method for high-fidelity thermal analysis of laser powder bed fusion. Finite Elem Anal Des 210:103815

    Article  MathSciNet  Google Scholar 

  130. Kopp P, Calo V, Rank E, Kollmannsberger S (2022) Space-time hp-finite elements for heat evolution in laser powder bed fusion additive manufacturing. Eng Comput 38(6):4879–4893

    Article  Google Scholar 

  131. Khorasani M et al (2022) The effect of absorption ratio on meltpool features in laser-based powder bed fusion of IN718. Opt Laser Technol 153:108263

    Article  Google Scholar 

  132. Wang W, Ning J, Liang SY (2022) Analytical prediction of keyhole porosity in laser powder bed fusion. Int J Adv Manuf Technol 119(11–12):6995–7002

    Article  Google Scholar 

  133. Ren Z, Fu G, Zhang DZ, Zhang K, Zhao M (2022) Thermal flow characteristics and the evolution of laser absorption in laser powder bed fusion of Cu-Cr-Zr alloy. Int J Mech Sci 216:106957

    Article  Google Scholar 

  134. Ghasemi-Tabasi H et al (2022) Direct observation of crack formation mechanisms with operando laser powder bed fusion X-ray imaging. Addit Manuf 51:102619

    Google Scholar 

  135. Yao X, Zhang Z (2022) Laser-particle interaction-based heat source model of laser powder bed fusion additive manufacturing. Opt Laser Technol 155:108402

    Article  Google Scholar 

  136. Ji X, Zhang S, Wang Y, Liang SY (2022) Effect of thermal-fluidic transport on the temperature distribution and the melt pool in laser powder bed fusion of Ti6Al4V. Opt Laser Technol 156:108587

    Article  Google Scholar 

  137. Khorasani M et al (2022) A comprehensive study on meltpool depth in laser-based powder bed fusion of Inconel 718. Int J Adv Manuf Technol 120(3–4):2345–2362

    Article  Google Scholar 

  138. Wang W, Liang SY (2022) A 3D analytical modeling method for keyhole porosity prediction in laser powder bed fusion. Int J Adv Manuf Technol 120(5–6):3017–3025

    Article  Google Scholar 

  139. Yuan W, Chen H, Li S, Heng Y, Yin S, Wei Q (2022) Understanding of adopting flat-top laser in laser powder bed fusion processed Inconel 718 alloy: simulation of single-track scanning and experiment. J Market Res 16:1388–1401

    Google Scholar 

  140. Kusano M, Watanabe M (2022) Microstructure control of Hastelloy X by geometry-induced elevation of sample temperature during a laser powder bed fusion process. Mater Des 222:111016

    Article  Google Scholar 

  141. Abedi H et al (2022) A physics-based model of laser powder bed fusion of NiTi shape memory alloy: laser single track and melt pool dimension prediction, in ASME International Mechanical Engineering Congress and Exposition, vol. 86632: American Society of Mechanical Engineers, p. V02AT02A030

  142. Strayer ST, Templeton WJF, Dugast FX, Narra SP, To AC (2022) Accelerating high-fidelity thermal process simulation of laser powder bed fusion via the computational fluid dynamics imposed finite element method (CIFEM). Addit Manuf Lett 3:100081

    Article  Google Scholar 

  143. Ghasri-Khouzani M, Karimialavijeh H, Tangestani R, Pröbstle M, Martin É (2023) Single-track study of A20X aluminum alloy fabricated by laser powder bed fusion: modeling and experiments. Opt Laser Technol 162:109276

    Article  Google Scholar 

  144. Shahabad SI et al (2022) On the effect of thin-wall thickness on melt pool dimensions in laser powder-bed fusion of Hastelloy X: numerical modeling and experimental validation. J Manuf Process 75:435–449

    Article  Google Scholar 

  145. Wang W, Liang SY (2022) Physics-based analytical modeling of keyhole mode in laser powder bed fusion. Int J Adv Manuf Technol 123(7–8):2809–2818

    Article  Google Scholar 

  146. Cook PS, Ritchie DJ (2023) Determining the laser absorptivity of Ti-6Al-4V during laser powder bed fusion by calibrated melt pool simulation. Opt Laser Technol 162:109247

    Article  Google Scholar 

  147. Camus T, Maisonnette D, Baulin O, Senninger O, Guillemot G, Gandin C-A (2023) Three-dimensional modeling of solidification grain structures generated by laser powder bed fusion. Materialia 101804

  148. Chen M et al (2023) A quantitative study of thermal cycling along the build direction of Ti-6Al-4V produced by laser powder bed fusion. Mater Des 225:111458

    Article  Google Scholar 

  149. Scheel P et al (2023) Advancing efficiency and reliability in thermal analysis of laser powder-bed fusion. Int J Mech Sci 260:108583

    Article  Google Scholar 

  150. Ninpetch P, Chalermkarnnon P, Kowitwarangkul P (2023) Multiphysics simulation of thermal-fluid behavior in laser powder bed fusion of H13 steel: influence of layer thickness and energy input. Met Mater Int 29(2):536–551

    Article  Google Scholar 

  151. Yao D, Wang J, Luo H, Wu Y, An X (2023) Thermal behavior and control during multi-track laser powder bed fusion of 316 L stainless steel. Addit Manuf 70:103562

    Google Scholar 

  152. Zöller C, Adams N, Adami S (2023) Numerical investigation of balling defects in laser-based powder bed fusion of metals with Inconel 718. Addit Manuf 103658

  153. Yue D, Qin R, Li D, Wang Z, Zhang X, Chen B (2023) Numerical investigation of block support structures with different dimension parameters in laser powder bed fusion of AlSi10Mg. Results Phys 44:106204

    Article  Google Scholar 

  154. Wang Y, Ji X, Liang SY (2023) Analytical modeling of temperature distribution in laser powder bed fusion with different scan strategies. Opt Laser Technol 157:108708

    Article  Google Scholar 

  155. Aggarwal A, Shin YC, Kumar A (2023) Investigation of the transient coupling between the dynamic laser beam absorptance and the melt pool-vapor depression morphology in laser powder bed fusion process. Int J Heat Mass Transf 201:123663

    Article  Google Scholar 

  156. Wang Y et al (2023) Mechanisms of processing map difference between laser powder bed fusion of Mg solid cubes and lattice structures. Addit Manuf 76:103773

    Google Scholar 

  157. Pramod S, Kesavan D (2023) Melting modes of laser powder bed fusion (L-PBF) processed IN718 alloy: prediction and experimental analysis. Adv Ind Manuf Eng 6:100106

    Google Scholar 

  158. Khorasani M et al (2023) Benchmark models for conduction and keyhole modes in laser-based powder bed fusion of Inconel 718. Opt Laser Technol 164:109509

    Article  Google Scholar 

  159. Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928

    Article  Google Scholar 

  160. Thijs L, Verhaeghe F, Craeghs T, Van Humbeeck J, Kruth J-P (2010) A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater 58(9):3303–3312

    Article  Google Scholar 

  161. Yadroitsev I, Gusarov A, Yadroitsava I, Smurov I (2010) Single track formation in selective laser melting of metal powders. J Mater Process Technol 210(12):1624–1631

    Article  Google Scholar 

  162. Wang YM et al (2018) Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater 17(1):63–71

    Article  Google Scholar 

  163. DebRoy T et al (2018) Additive manufacturing of metallic components–process, structure and properties. Prog Mater Sci 92:112–224

    Article  Google Scholar 

  164. Flemings MC (1974) Solidification processing. Metall Mater Trans B 5:2121–2134

    Article  Google Scholar 

  165. Wu S, Lei Z, Li B, Liang J, Chen Y (2022) Hot cracking evolution and formation mechanism in 2195 Al-Li alloy printed by laser powder bed fusion. Addit Manuf 54:102762

    Google Scholar 

  166. Yadroitsev I, Krakhmalev P, Yadroitsava I, Johansson S, Smurov I (2013) Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. J Mater Process Technol 213(4):606–613

    Article  Google Scholar 

  167. Zhang Y, Zhang J (2019) Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316L stainless steel using combined computational fluid dynamics and cellular automata. Addit Manuf 28:750–765

    MathSciNet  Google Scholar 

  168. Buttard M et al (2023) Towards an alloy design strategy by tuning liquid local ordering: what solidification of an Al-alloy designed for laser powder bed fusion teaches us. Addit Manuf 61:103313

    Google Scholar 

  169. Acharya R, Sharon JA, Staroselsky A (2017) Prediction of microstructure in laser powder bed fusion process. Acta Mater 124:360–371

    Article  Google Scholar 

  170. Spierings AB et al (2017) Microstructural features of Sc-and Zr-modified Al-Mg alloys processed by selective laser melting. Mater Des 115:52–63

    Article  Google Scholar 

  171. Tan Q et al (2020) A novel method to 3D-print fine-grained AlSi10Mg alloy with isotropic properties via inoculation with LaB6 nanoparticles. Addit Manuf 32:101034

    Google Scholar 

  172. Zhou S, Su Y, Wang H, Enz J, Ebel T, Yan M (2020) Selective laser melting additive manufacturing of 7xxx series Al-Zn-Mg-Cu alloy: cracking elimination by co-incorporation of Si and TiB2. Addit Manuf 36:101458

    Google Scholar 

  173. Leijon F, Wachter S, Fu Z, Körner C, Skjervold S, Moverare J (2021) A novel rapid alloy development method towards powder bed additive manufacturing, demonstrated for binary Al-Ti,-Zr and-Nb alloys. Mater Des 211:110129

    Article  Google Scholar 

  174. Xu J, Kontis P, Peng RL, Moverare J (2022) Modelling of additive manufacturability of nickel-based superalloys for laser powder bed fusion. Acta Mater 240:118307

    Article  Google Scholar 

  175. Chen W, Li Z (2019) Additive manufacturing of titanium aluminides in Additive Manufacturing for the Aerospace Industry: Elsevier, 235–263

  176. Vallabh CKP, Sridar S, Xiong W, Zhao X (2022) Predicting melt pool depth and grain length using multiple signatures from in-situ single camera two-wavelength imaging pyrometry for laser powder bed fusion. J Mater Process Technol 308:117724

    Article  Google Scholar 

  177. Wang G, Liang J, Zhou Y, Jin T, Sun X, Hu Z (2017) Prediction of dendrite orientation and stray grain distribution in laser surface-melted single crystal superalloy. J Mater Sci Technol 33(5):499–506

    Article  Google Scholar 

  178. Wang X, Chou K (2019) Microstructure simulations of Inconel 718 during selective laser melting using a phase field model. Int J Adv Manuf Technol 100:2147–2162

    Article  Google Scholar 

  179. Agrawal AK, de Bellefon GM, Thoma D (2020) High-throughput experimentation for microstructural design in additively manufactured 316L stainless steel. Mater Sci Eng A 793:139841

    Article  Google Scholar 

  180. Thompson MK et al (2016) Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann 65(2):737–760

    Article  Google Scholar 

  181. Pandiyan V, Drissi-Daoudi R, Shevchik S, Masinelli G, Logé R, Wasmer K (2020) Analysis of time, frequency and time-frequency domain features from acoustic emissions during laser powder-bed fusion process. Procedia CIRP 94:392–397

    Article  Google Scholar 

  182. Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM (2016) The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment. Mater Sci Eng A 667:139–146

    Article  Google Scholar 

  183. Cao Y, Wei H, Yang T, Liu T, Liao W (2021) Printability assessment with porosity and solidification cracking susceptibilities for a high strength aluminum alloy during laser powder bed fusion. Addit Manuf 46:102103

    Google Scholar 

  184. Thijs L, Kempen K, Kruth J-P, Van Humbeeck J (2013) Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater 61(5):1809–1819

    Article  Google Scholar 

  185. Gong H, Rafi K, Gu H, Ram GJ, Starr T, Stucker B (2015) Influence of defects on mechanical properties of Ti–6Al–4 V components produced by selective laser melting and electron beam melting. Mater Des 86:545–554

    Article  Google Scholar 

  186. du Plessis A (2019) Effects of process parameters on porosity in laser powder bed fusion revealed by X-ray tomography. Addit Manuf 30:100871

    Google Scholar 

  187. Obeidi MA et al (2021) Comparison of the porosity and mechanical performance of 316L stainless steel manufactured on different laser powder bed fusion metal additive manufacturing machines. J Market Res 13:2361–2374

    Google Scholar 

  188. Tang M, Pistorius PC, Beuth JL (2017) Prediction of lack-of-fusion porosity for powder bed fusion. Addit Manuf 14:39–48

    Google Scholar 

  189. Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM (2016) On the formation of AlSi10Mg single tracks and layers in selective laser melting: microstructure and nano-mechanical properties. J Mater Process Technol 230:88–98

    Article  Google Scholar 

  190. Gong H, Rafi K, Gu H, Starr T, Stucker B (2014) Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf 1:87–98

    Google Scholar 

  191. Mindt H, Desmaison O, Megahed M (n.d) Modelling powder bed additive manufacturing defects,” in 7th Eur. Conf. Aeronaut. Sp Sci Model 1–6

  192. Ning J, Wang W, Zamorano B, Liang SY (2019) Analytical modeling of lack-of-fusion porosity in metal additive manufacturing. Appl Phys A 125:1–11

    Article  Google Scholar 

  193. Scime L, Beuth J (2019) Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process. Addit Manuf 25:151–165

    Google Scholar 

  194. Forien J-B, Calta NP, DePond PJ, Guss GM, Roehling TT, Matthews MJ (2020) Detecting keyhole pore defects and monitoring process signatures during laser powder bed fusion: a correlation between in situ pyrometry and ex situ X-ray radiography. Addit Manuf 35:101336

    Google Scholar 

  195. Wang W, Liang SY (2021) Physics-based predictive model of lack-of-fusion porosity in laser powder bed fusion considering cap area. Crystals 11(12):1568

    Article  Google Scholar 

  196. Wang W, Ning J, Liang SY (2021) Prediction of lack-of-fusion porosity in laser powder-bed fusion considering boundary conditions and sensitivity to laser power absorption. Int J Adv Manuf Technol 112:61–70

    Article  Google Scholar 

  197. Yavari R et al (2021) Part-scale thermal simulation of laser powder bed fusion using graph theory: effect of thermal history on porosity, microstructure evolution, and recoater crash. Mater Des 204:109685

    Article  Google Scholar 

  198. Pandiyan V et al (2022) Deep transfer learning of additive manufacturing mechanisms across materials in metal-based laser powder bed fusion process. J Mater Process Technol 303:117531

    Article  Google Scholar 

  199. Schwerz C, Nyborg L (2022) A neural network for identification and classification of systematic internal flaws in laser powder bed fusion. CIRP J Manuf Sci Technol 37:312–318

    Article  Google Scholar 

  200. Xiao X, Roh B-M, Hamilton C (2022) Porosity management and control in powder bed fusion process through process-quality interactions. CIRP J Manuf Sci Technol 38:120–128

    Article  Google Scholar 

  201. Estalaki SM, Lough CS, Landers RG, Kinzel EC, Luo T (2022) Predicting defects in laser powder bed fusion using in-situ thermal imaging data and machine learning. Addit Manuf 58:103008

    Google Scholar 

  202. Shahabi M, Reddy T, Rollett AD, Narra SP (2022) A statistical approach to determine data requirements for part porosity characterization in laser powder bed fusion additive manufacturing. Mater Charact 190:112027

    Article  Google Scholar 

  203. Smoqi Z et al (2022) Monitoring and prediction of porosity in laser powder bed fusion using physics-informed meltpool signatures and machine learning. J Mater Process Technol 304:117550

    Article  Google Scholar 

  204. Asherloo M et al (2023) Understanding process-microstructure-property relationships in laser powder bed fusion of non-spherical Ti-6Al-4V powder. Mater Charact 198:112757

    Article  Google Scholar 

  205. Mojumder S, Gan Z, Li Y, Al Amin A, Liu WK (2023) Linking process parameters with lack-of-fusion porosity for laser powder bed fusion metal additive manufacturing. Addit Manuf 68:103500

    Google Scholar 

  206. Joshi K et al (2023) Effect of porosity distribution on the strength and strain-to-failure of laser-powder bed fusion printed Ti–6Al–4V. Addit Manuf 75:103738

    Google Scholar 

  207. Ni J et al (2019) Three-dimensional printing of metals for biomedical applications. Mater Today Bio 3:100024

    Article  Google Scholar 

  208. Leuders S et al (2013) On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. Int J Fatigue 48:300–307

    Article  Google Scholar 

  209. Attar H, Calin M, Zhang L, Scudino S, Eckert J (2014) Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater Sci Eng A 593:170–177

    Article  Google Scholar 

  210. Vrancken B, Thijs L, Kruth J-P, Van Humbeeck J (2012) Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. J Alloy Compd 541:177–185

    Article  Google Scholar 

  211. Kempen K, Vrancken B, Buls S, Thijs L, Van Humbeeck J, Kruth J-P (2014) Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating. J Manuf Sci Eng 136(6):061026

    Article  Google Scholar 

  212. Hua C, Lu H, Yu C, Chen J-M, Wei X, Xu J-J (2017) Reduction of ductility-dip cracking susceptibility by ultrasonic-assisted GTAW. J Mater Process Technol 239:240–250

    Article  Google Scholar 

  213. Chen Y et al (2022) Microstructure characterization and mechanical properties of crack-free Al-Cu-Mg-Y alloy fabricated by laser powder bed fusion. Addit Manuf 58:103006

    Google Scholar 

  214. Chakraborty A et al (2022) Micro-cracking mechanism of RENÉ 108 thin-wall components built by laser powder bed fusion additive manufacturing. Mater Today Commun 30:103139

    Article  Google Scholar 

  215. Tran HT, Chen Q, Mohan J, To AC (2020) A new method for predicting cracking at the interface between solid and lattice support during laser powder bed fusion additive manufacturing. Addit Manuf 32:101050

    Google Scholar 

  216. Hyer H et al (2021) Composition-dependent solidification cracking of aluminum-silicon alloys during laser powder bed fusion. Acta Mater 208:116698

    Article  Google Scholar 

  217. Hyer H, Zhou L, Mehta A, Sohn Y (2021) Effects of alloy composition and solid-state diffusion kinetics on powder bed fusion cracking susceptibility. J Phase Equilib Diffus 42:5–13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyedeh Fatemeh Nabavi or Hamid Dalir.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabavi, S.F., Dalir, H. & Farshidianfar, A. A comprehensive review of recent advances in laser powder bed fusion characteristics modeling: metallurgical and defects. Int J Adv Manuf Technol 132, 2233–2269 (2024). https://doi.org/10.1007/s00170-024-13491-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13491-1

Keywords

Navigation