Skip to main content

Advertisement

Log in

Digital twin-driven design for elevator fairings via multi-objective optimization

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Traditional geometry optimization of elevator fairings is only based on computational fluid dynamics simulations to find optimal structure parameters, and a large volume of data generated during the elevator operation is not utilized to optimize elevator fairings collaboratively. This paper proposes a digital twin-driven design framework to design the elevator fairing of the next generation. A digital twin model corresponding to the real elevator is first established via a computing platform, and a multi-objective optimization method like neighborhood cultivation genetic algorithms is employed to optimize the elevator fairing design. The effectiveness of the digital twin-driven design framework is demonstrated by the elevator fairing design, and the results show that compared with the unoptimized elevator fairing, the air drag and the lateral force are lowered by 18.1% and 11.2%, respectively, and the turbulence coefficient decreases from 0.478 to 0.451 after optimizing the elevator fairing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Qiao S, Zhang R, He Q, Zhang L (2019) Theoretical modeling and sensitivity analysis of the car-induced unsteady airflow in super high-speed elevator. J Wind Eng Ind Aerodyn 188:280–293. https://doi.org/10.1016/j.jweia.2019.02.012

    Article  Google Scholar 

  2. Shi L, Liu Y, Jin S, Cao Z (2007) Numerical simulation of unsteady turbulent flow induced by two-dimensional elevator car and counter weight system. J Hydrodyn 19(6):720–725. https://doi.org/10.1016/S1001-6058(08)60009-8

    Article  Google Scholar 

  3. Chen Y, Yang L, Fu Z, Chen L, Chen J (2018) Gas flow behavior and flow transition in elevator shafts considering elevator motion during a building fire. Build Simul 11(4):765–771. https://doi.org/10.1007/s12273-018-0430-3

    Article  Google Scholar 

  4. Zhou L, Tse TK, Hu G, Li Y (2021) Higher order dynamic mode decomposition of wind pressures on square buildings. J Wind Eng Ind Aerodyn 211:104545. https://doi.org/10.1016/j.jweia.2021.104545

    Article  Google Scholar 

  5. Li CY, Tse TK, Hu G (2020) Dynamic mode decomposition on pressure flow field analysis: Flow field reconstruction, accuracy, and practical significance. J Wind Eng Ind Aerodyn 205:104278. https://doi.org/10.1016/j.jweia.2020.104278

    Article  Google Scholar 

  6. Xie J, Mao S, Zhang Z, Liu C (2023) Data-driven approaches for characterization of aerodynamics on super high-speed elevators. ASME J Comput Inf Sci Eng 23(3):1–9. https://doi.org/10.1115/1.4054869

    Article  Google Scholar 

  7. Tao F, Sui F, Liu A, Qi Q, Zhang M, Song B, Guo Z, Lu SCY, Nee AYC (2019) Digital twin-driven product design framework. Int J Prod Res 57(12):3935–3953. https://doi.org/10.1080/00207543.2018.1443229

    Article  Google Scholar 

  8. Kapteyn MG, Pretorius JVR, Willcox KE (2021) A probabilistic graphical model foundation for enabling predictive digital twins at scale. Nat Comput Sci 1(5):337–347. https://doi.org/10.1038/s43588-021-00069-0

    Article  PubMed  Google Scholar 

  9. Kapteyn MG, Willcox KE (2022) Design of digital twin sensing strategies via predictive modeling and interpretable machine learning. J Mech Des 144(9):1–15. https://doi.org/10.1115/1.4054907

    Article  Google Scholar 

  10. Zheng Y (2015) Stability analysis and design optimization for the high-speed elevator car fairing dynamics parameters. MA thesis. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201601&filename=1015630322.nh. Accessed 12 Mar 2023

  11. Li S (2017) Modeling and compensation design of air pressure variation in high-speed elevator car and its application. MA thesis. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201701&filename=1017047268.nh. Accessed 12 Mar 2023

  12. Wang X (2019) Study on aerodynamic characteristic optimization and performance evaluation method of high speed elevator. MA thesis. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201901&filename=1019038736.nh. Accessed 12 Mar 2023

  13. Tao F, Zhang H, Liu A, Nee AYC (2019) Digital twin in industry: state-of-the-art. IEEE Trans Ind Inf 15(4):2405–2415. https://doi.org/10.1109/TII.2018.2873186

    Article  Google Scholar 

  14. Liu M, Fang S, Dong H, Xu C (2021) Review of digital twin about concepts, technologies, and industrial applications. J Manuf Syst 58:346–361. https://doi.org/10.1016/j.jmsy.2020.06.017

    Article  Google Scholar 

  15. Semeraro C, Lezoche M, Panetto H, Dassisti M (2021) Digital twin paradigm: a systematic literature review. Comput Ind 130:103469. https://doi.org/10.1016/j.compind.2021.103469

    Article  Google Scholar 

  16. Lo C, Chen C, Zhong RY (2021) A review of digital twin in product design and development. Adv Eng Inf 48:101297. https://doi.org/10.1016/j.aei.2021.101297

    Article  Google Scholar 

  17. Glaessgen E, Stargel D (2012) The digital twin paradigm for future NASA and U.S. Air Force Vehicles. In: 53rd AIAA/ASME/ASCE/AHS/ASC Struct Dyn Mater Conf. https://doi.org/10.2514/6.2012-1818

    Chapter  Google Scholar 

  18. Tao F, Cheng J, Qi Q, Zhang M, Zhang H, Sui F (2018) Digital twin-driven product design, manufacturing and service with big data. Int J Adv Manuf Technol 94(9–12):3563–3576. https://doi.org/10.1007/s00170-017-0233-1

    Article  Google Scholar 

  19. Wagner S, Milde M, Felicien BM, Reinhart G (2021) Digital twin design in production. CARV MCPC 2021. https://doi.org/10.1007/978-3-030-90700-6_38

  20. Schleich B, Anwer N, Mathieu L, Wartzack S (2017) Shaping the digital twin for design and production engineering. CIRP Ann 66(1):141–144. https://doi.org/10.1016/j.cirp.2017.04.040

    Article  Google Scholar 

  21. Bomström H, Annanperä E, Kelanti M, Xu Y, Mäkelä S, Immonen M, Siirtola P, Teern A, Liukkunen K, Päivärinta T (2022) Digital twins about humans—design objectives from three projects. ASME. J Comput Inf Sci Eng 22(5):050907. https://doi.org/10.1115/1.4054270

    Article  Google Scholar 

  22. Lai X, He X, Wang S, Wang X, Sun W, Song X (2022) Building a lightweight digital twin of a crane boom for structural safety monitoring based on a multifidelity surrogate model. J Mech Des 144(6). https://doi.org/10.1115/1.4053606

  23. Wang S, Lai X, He X, Qiu Y, Song X (2021) Building a trustworthy product-level shape-performance integrated digital twin with multifidelity surrogate model. J Mech Des 144(3). https://doi.org/10.1115/1.4052390

  24. Chua PC, Moon SK, Ng YT, Ng HY (2021) A surrogate model to predict production performance in digital twin-based smart manufacturing. J Comput Inf Sci Eng 22(3):031007. https://doi.org/10.1115/1.4053038

    Article  Google Scholar 

  25. Lim KYH, Zheng P, Chen CH, Huang L (2020) A digital twin-enhanced system for engineering product family design and optimization. J Manuf Syst 57:82–93. https://doi.org/10.1016/j.jmsy.2020.08.011

    Article  Google Scholar 

  26. Huang S, Wang G, Yan Y (2020) Building blocks for digital twin of reconfigurable machine tools from design perspective. Int J Prod Res 60(3):942–956. https://doi.org/10.1080/00207543.2020.1847340

    Article  Google Scholar 

  27. Dong Y, Tan R, Zhang P, Peng Q, Shao P (2021) Product redesign using functional backtrack with digital twin. Adv Eng Inf 49:101361. https://doi.org/10.1016/j.aei.2021.101361

    Article  Google Scholar 

  28. Lin TY, Jia Z, Yang C, Xiao Y, Lan S, Shi G, Zeng B, Li H (2021) Evolutionary digital twin: A new approach for intelligent industrial product development. Adv Eng Inf 47:101209. https://doi.org/10.1016/j.aei.2020.101209

    Article  Google Scholar 

  29. Fu Y, Zhu G, Zhu ML, Xuan FZ (2022) Digital twin for integration of design-manufacturing-maintenance: An overview. Chin J Mech Eng-En 35(1). https://doi.org/10.1186/s10033-022-00760-x

  30. Wu Y, Zhou L, Zheng P, Sun Y, Zhang K (2022) A digital twin-based multidisciplinary collaborative design approach for complex engineering product development. Adv Eng Inf 52:101635. https://doi.org/10.1016/j.aei.2022.101635

    Article  Google Scholar 

  31. Li S, Wang J, Rong J, Wei W (2022) A digital twin framework for product to-be-designed analysis based on operation data. Procedia CIRP 109:179–184. https://doi.org/10.1016/j.procir.2022.05.233

    Article  Google Scholar 

  32. Bellalouna F (2021) Case study for design optimization using the digital twin approach. Procedia CIRP 100:595–600. https://doi.org/10.1016/j.procir.2021.05.129

    Article  Google Scholar 

  33. Demirel OH, Irshad L, Ahmed S, Tumer IY (2021) Digital twin-driven human-centered design frameworks for meeting sustainability objectives. J Comput Inf Sci Eng 21(3):031012. https://doi.org/10.1115/1.4050684

    Article  Google Scholar 

  34. Yan D, Liu Q, Leng J, Zhang D, Zhao R, Zhang H, Wei L (2021) Digital twin-driven rapid customized design of board-type furniture production line. J Comput Inf Sci Eng 21(3):031011. https://doi.org/10.1115/1.4050617

    Article  Google Scholar 

  35. Huang S, Wang G, Lei D, Yan Y (2022) Toward digital validation for rapid product development based on digital twin: a framework. Int J Adv Manuf Technol 119:2509–2523. https://doi.org/10.1007/s00170-021-08475-4

    Article  Google Scholar 

  36. Yan D, Sha W, Wang D, Yang J, Zhang S (2022) Digital twin-driven variant design of a 3c electronic product assembly line. Sci Rep 12:1–12. https://doi.org/10.1038/s41598-022-07894-x

    Article  CAS  Google Scholar 

  37. Chang X, Jia X, Liu K, Hao H (2021) Knowledge-enabled digital twin for smart designing of aircraft assembly line. Assem Autom 41(4):441–456. https://doi.org/10.1108/AA-09-2020-0133

    Article  Google Scholar 

  38. Sun X, Bao J, Li J, Zhang Y, Liu S, Zhou B (2020) A digital twin-driven approach for the assembly commissioning of high precision products. Rob Comput Integr Manuf 61:101839. https://doi.org/10.1016/j.rcim.2019.101839

    Article  Google Scholar 

  39. Guo J, Zhao N, Sun L, Zhang S (2019) Modular based flexible digital twin for factory design. J Ambient Intell Humanized Comput 10(3):1189–1200. https://doi.org/10.1007/s12652-018-0953-6

    Article  Google Scholar 

  40. Aderiani RA, Wärmefjord K, Söderberg R, Lindkvist L (2019) Individualizing locator adjustments of assembly fixtures using a digital twin. ASME. J Comput Inf Sci Eng 19(4):041019. https://doi.org/10.1115/1.4043529

    Article  Google Scholar 

  41. Kombaya Touckia J, Hamani N, Kermad L (2022) Digital twin framework for reconfigurable manufacturing systems (RMSs): design and simulation. Int J Adv Manuf Technol 120:5431–5450. https://doi.org/10.1007/s00170-022-09118-y

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yang J, Langley RS, Andrade L (2022) Digital twins for design in the presence of uncertainties. Mech Syst Signal Process 179:109338. https://doi.org/10.1016/j.ymssp.2022.109338

    Article  Google Scholar 

  43. Qiao J, Huang X, Wang J, Wong RK (2020) Dual-pisa: an index for aggregation operations on time series data. Inf Syst 87:101427. https://doi.org/10.1016/j.is.2019.101427

    Article  Google Scholar 

  44. Wang C, Huang X, Qiao J, Jiang T, Rui L, Zhang J, Kang R, Feinauer J, McGrail KA, Wang P, Luo D, Yuan J, Wang J, Sun J (2020) Apache iotdb: time-series database for internet of things. Proc VLDB Endow 13(12):2901–2904. https://doi.org/10.14778/3415478.3415504

    Article  Google Scholar 

  45. Tomiyama T, Gu P, Jin Y, Lutters D, Kind C, Kimura F (2009) Design methodologies: industrial and educational applications. CIRP Ann 58(2):543–565. https://doi.org/10.1016/j.cirp.2009.09.003

    Article  Google Scholar 

  46. Gu Y, Zhang S, Qiu L (2021) Digital twin driven requirement conversion in smart customized design. IEEE Access 9:64414–64426. https://doi.org/10.1109/ACCESS.2021.3075069

    Article  Google Scholar 

  47. Molinaro R, Singh J, Catsoulis S, Narayanan C, Lakehal D (2021) Embedding data analytics and cfd into the digital twin concept. Comput Fluids 214:104759. https://doi.org/10.1016/j.compfluid.2020.104759

    Article  MathSciNet  Google Scholar 

  48. Thomas J, Sinha K, Shivkumar G, Cao L, Funck M, Shang S, Nere N (2021) A cfd digital twin to understand miscible fluid blending. AAPS PharmSciTech 22(3):91. https://doi.org/10.1208/s12249-021-01972-5

    Article  PubMed  Google Scholar 

  49. Watanabe S, Hiroyasu T, Miki M (2002) Ncga: Neighborhood cultivation genetic algorithm for multi-objective optimization problems. In: GECCO: Proc Genet Evol Comput Conf, pp 458–465

    Google Scholar 

  50. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Tran Evol Comput 6(2):182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  51. Tiwari S, Koch P, Fadel G, Deb K (2008) Amga: an archive-based micro genetic algorithm for multi-objective optimization. In: GECCO’ 08: Proc Annu Conf Genet Evolut Comput, pp 729–736. https://doi.org/10.1145/1389095.1389235

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Dr. Qin Zhang for his constructive advice.

Funding

This study is financially supported by the National Natural Science Foundation of China (Grant no. 51935007), Shanghai Municipal Science and Technology Major Project (Grant No. 2021SHZDZX0102), and the State Key Laboratory of Mechanical System and Vibration Project (Grant no. MSVZD202108).

Author information

Authors and Affiliations

Authors

Contributions

Jingren Xie: writing—original draft, methodology. Chengjin Qin: writing—review and editing. Chengliang Liu: conceptualization, supervision. Zhinan Zhang: validation, supervision. Shuang Xu: formal analysis. Longye Chen: investigation.

Corresponding author

Correspondence to Zhinan Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Chen, L., Xu, S. et al. Digital twin-driven design for elevator fairings via multi-objective optimization. Int J Adv Manuf Technol 131, 1413–1426 (2024). https://doi.org/10.1007/s00170-024-13049-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13049-1

Keywords

Navigation