Skip to main content
Log in

Study on the constant force control of aero-engine blade grinding robot considering time delay

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The aero-engine blade grinding system has time delay problem, which leads to large fluctuation of grinding force and eventually affects the surface roughness of the blade. To address this problem, this paper combines the improved Smith prediction algorithm with active disturbance rejection control (ADRC) to propose the filter Smith-ADRC control algorithm, which consists of three parts, namely, the main controller, the compensator and the filter. It is firstly simulated and analyzed in Matlab/Simulink platform, and then the robot grinding system is constructed for experimental verification, which is executed by the robot for position control and by the end-effector for force control. Both simulation and experimental results show that the grinding system with filter Smith-ADRC controller has good control effect and stability. The surface roughness of the blade is 0.3503 μm after grinding, which is better than other control algorithms such as ADRC and Smith’s predictive control. Consequently, the filter Smith-ADRC control algorithm can overcome the time delay problem of the system and improve the grinding accuracy and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

Available on request.

Code availability

The codes that support the findings of this study are available from corresponding author upon reasonable request.

References

  1. Ke XL, Yu YH, Li KS, Wang TY, Zhong B, Wang ZZ (2023) Review on robot-assisted polishing: Status and future trends. Robot Comput-Integr Manuf 80:102482. https://doi.org/10.1016/j.rcim.2022.102482

    Article  Google Scholar 

  2. Wang GL, Deng YX, Zhou HB, Yue X (2023) PD-adaptive variable impedance constant force control of macro-mini robot for compliant grinding and polishing. Int J Adv Manuf Technol 124:2149–2170. https://doi.org/10.1007/s00170-022-10405-x

    Article  Google Scholar 

  3. Tian FJ, Li ZG, Lv C, Liu GB (2016) Polishing pressure investigations of robot automatic polishing on curved surfaces. Int J Adv Manuf Technol 87:639–646. https://doi.org/10.1007/s00170-016-8527-2

    Article  Google Scholar 

  4. Dong JL, Shi JS, Liu C, Yu TB (2021) Research of Pneumatic Polishing Force Control System Based on High Speed On/off with PWM Controlling. Robot Comput-Integr Manuf 70:102133. https://doi.org/10.1016/j.rcim.2021.102133

    Article  Google Scholar 

  5. Roveda L, Pallucca G, Pedrocchi N, Braghin F, Tosatti LM (2017) Iterative Learning Procedure with Reinforcement for High-Accuracy Force Tracking in Robotized Tasks. IEEE Trans Industr Inform 14(4):1753–1763. https://doi.org/10.1109/TII.2017.2748236

    Article  Google Scholar 

  6. Lin B, Jiang XM, Cao ZC, Huang T (2019) Development and theoretical analysis of novel center-inlet computer-controlled polishing process for high-efficiency polishing of optical surfaces. Robot Comput-Integr Manuf 59:1–12. https://doi.org/10.1016/j.rcim.2019.01.017

    Article  Google Scholar 

  7. Lakshminarayanan S, Kana S, Mohan DM, Manyar OM, Then D, Campolo D (2020) An adaptive framework for robotic polishing based on impedance control. Int J Adv Manuf Technol 112(1–2):401–417. https://doi.org/10.1007/s00170-020-06270-1

    Article  Google Scholar 

  8. Wei YZ, Xu QS (2022) Design of a new passive end-effector based on constant-force mechanism for robotic polishing. Robot Comput-Integr Manuf 74:7102278. https://doi.org/10.1016/j.rcim.2021.102278

    Article  Google Scholar 

  9. Wang QL, Wang W, Zheng LY, Yun C (2021) Force control-based vibration suppression in robotic grinding of large thin-wall shells. Robot Comput-Integr Manuf 67:102031. https://doi.org/10.1016/j.rcim.2020.102031

    Article  Google Scholar 

  10. Xu XH, Chen W, Zhu DH, Yan SJ, Ding H (2021) Hybrid active/passive force control strategy for grinding marks suppression and profile accuracy enhancement in robotic belt grinding of turbine blade. Robot Comput-Integr Manuf 67:102047. https://doi.org/10.1016/j.rcim.2020.102047

    Article  Google Scholar 

  11. Mohammad AEK, Hong J, Wang DW (2018) Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach. Robot Comput-Integr Manuf 49:54–56. https://doi.org/10.1016/j.rcim.2017.05.011

    Article  Google Scholar 

  12. Xu XH, Zhu DH, Zhang HY, Yan SJ, Ding H (2019) Application of novel force control strategies to enhance robotic abrasive belt grinding quality of aero-engine blades. Chin J Aeronaut 32(10):2368–2382. https://doi.org/10.1016/j.cja.2019.01.023

    Article  Google Scholar 

  13. Califano C, Moog CH (2017) Accessibility of Nonlinear Time-Delay Systems. IEEE Trans Automat Contr 62(3):1254–1268. https://doi.org/10.1109/tac.2016.2581701

    Article  MathSciNet  Google Scholar 

  14. Lu JQ, Jiang BX, Zheng WX (2022) Potential Impacts of Delay on Stability of Impulsive Control Systems. IEEE Trans Automat Contr 67(10):5179–5190. https://doi.org/10.1109/tac.2021.3120672

    Article  MathSciNet  Google Scholar 

  15. Meng QT, Ma Q, Zhou GP (2022) Adaptive Output Feedback Control for Stochastic Uncertain Nonlinear Time-Delay Systems. IEEE Trans Circuits Syst II Express Briefs 69(7):3289–3293. https://doi.org/10.1109/tcsii.2022.3152523

    Article  Google Scholar 

  16. Zheng YD (2021) Adaptive control for time-delay systems adopting Smith predictor models. Control Theory Appl 38(3):416–424 (https://doi.org/CSCD:6944172)

    Google Scholar 

  17. Sun Y, Lu Z, Li P (2015) Complex time-delay dynamical systems of quadratic polynomials mapping. Nonlinear Dynam 79(1):369–375. https://doi.org/10.1007/s11071-014-1670-0

    Article  MathSciNet  Google Scholar 

  18. Wang W, Liu MH, Zeng HB (2022) Stability analysis of time-delay systems via a delay-derivative-partitioning approach. IEEE Access 10:99330–99336. https://doi.org/10.1109/access.2022.3206959

    Article  Google Scholar 

  19. Liu T, Garcia P, Chen YL, Ren XH, Albertos P, Sanz R (2018) New predictor and 2DOF control scheme for industrial processes with long time delay. IEEE Trans Ind Electron 65(5):4247–4256. https://doi.org/10.1109/TIE.2017.2760839

    Article  Google Scholar 

  20. Lee SM, Shin M, Son H (2023) Robust predictor-based control for multirotor UAV with various time delays. IEEE Trans Ind Electron 70(8):8151–8162. https://doi.org/10.1109/TIE.2022.3224130

    Article  Google Scholar 

  21. Zhao XH, Chen SZ, Jing LT, Wang X (2023) H8 robust control for underwater supercavitating vehicle with time delay. J Vib Control. https://doi.org/10.1177/10775463231189555

    Article  Google Scholar 

  22. Ma XY, Zhang QZ, Liu JK, Xing XY (2023) Predictive disturbance-observer-based controller design for a class of input time-delay mechanical systems with input constraints. Int J Control. https://doi.org/10.1080/00207179.2023.2235445

    Article  Google Scholar 

  23. Jugo J, Elejaga A, Echevarria P (2023) Modified active disturbance rejection control scheme for systems with time delay. Iet Control Theory A. https://doi.org/10.1049/cth2.12515

    Article  Google Scholar 

  24. Baneshi F, Ghaffari V (2022) Designing of a non-fragile robust predictive controller for uncertain systems with time-varying delay: A delay-range-dependent approach. Iet Control Theory A 16(8):762–775. https://doi.org/10.1049/cth2.12268

    Article  MathSciNet  Google Scholar 

  25. Qin WW, Bing H, Gang L, Zhao PT (2016) Robust model predictive tracking control of hypersonic vehicles in the presence of actuator constraints and input delays. J Franklin I 353(17):4351–4367. https://doi.org/10.1016/j.jfranklin.2016.08.007

    Article  MathSciNet  Google Scholar 

  26. Sakthivel R, Harshavarthini S, Mohanapriya S, Almakhles DJ, Kavikumar R (2023) Disturbance rejection based tracking control design for fuzzy switched systems with time-varying delays and disturbances. Int J Robust Nonlin 33(2):1184–1202. https://doi.org/10.1002/rnc.6419

    Article  MathSciNet  Google Scholar 

  27. Feliu-Batlle V, Rivas-Perez R (2021) Control of the temperature in a petroleum refinery heating furnace based on a robust modified Smith predictor. Isa T 112:251–270. https://doi.org/10.1016/j.isatra.2020.12.006

    Article  Google Scholar 

  28. Ghorbani M, Tavakoli-Kakhki M, Tepljakov A, Petlenkov E (2023) Robust stability analysis of smith predictor based interval fractional-order control systems: A case study in level control process. Ieee-Caa J Automatic 10(3):762–780. https://doi.org/10.1109/jas.2022.105986

    Article  Google Scholar 

  29. Huang HC, Zhang SQ, Yang Z, Tian YQ (2018) Modified Smith fuzzy PID temperature control in an oil-replenishing device for deep-sea hydraulic system. Ocean Eng 149:14–22. https://doi.org/10.1016/j.oceaneng.2017.11.052

    Article  Google Scholar 

  30. Sindhuja PP, Vijayan V, Panda RC (2023) Control of time-delay systems through modified Smith predictor using sliding mode controller. Int J Syst Sci 1–26. https://doi.org/10.1080/00207721.2023.2210151

  31. Ranjan A, Mehta U (2023) Improved control of integrating cascade processes with time delays using fractional-order internal model controller with the Smith predictor. P I Mech Eng I-J Sys. https://doi.org/10.1177/09596518231168510

    Article  Google Scholar 

  32. Sakthivel R, Shobana N, Priyanka S, Kwon OM (2023) State observer-based predictive proportional-integral tracking control for fuzzy input time-delay systems. Int J Robust Nonlinear Control 33(11):6052–6069. https://doi.org/10.1002/rnc.6681

    Article  MathSciNet  Google Scholar 

  33. Lima DM, Lima BM, Normey-Rico JE (2023) A predictor for square multivariable dead-time systems with multiple delays based on the Kalman filter. J Process Control 124:105–117. https://doi.org/10.1016/j.jprocont.2023.02.016

    Article  CAS  Google Scholar 

  34. Dogruer T (2023) Design of I-PD controller based modified smith predictor for processes with inverse response and time delay using equilibrium optimizer. IEEE Access 11:14636–14646. https://doi.org/10.1109/access.2023.3244328

    Article  Google Scholar 

  35. Yegin MO, Ozbay H (2023) On Smith predictor based controllers for plants with time delay and multiple unstable modes. Syst Control Lett 172:105453. https://doi.org/10.1016/j.sysconle.2022.105453

    Article  MathSciNet  Google Scholar 

  36. Ba DJ, Chen GW, Li P, An KX, Liu XB (2023) Fuzzy Smith predictor-based active disturbance rejection controller for time-delay systems with application to drilling stick-slip vibration control. P I Mech Eng I-J Sys 237(3):401–414. https://doi.org/10.1177/09596518221134136

    Article  Google Scholar 

  37. Zheng YD (2022) Research of lyapunov-theory-based adaptive control improving on smith predictor methods in time-delay systems. Int J Control Autom 20(10):3177–3186. https://doi.org/10.1007/s12555-021-0354-z

    Article  Google Scholar 

  38. Mohanapriya S, Sakthivel R, Almakhles DJ (2022) Design of robust tracking and disturbance attenuation control for stochastic control systems. Isa T 129:110–120. https://doi.org/10.1016/j.isatra.2022.01.034

    Article  CAS  Google Scholar 

  39. Huang T, Sun LN, Wang ZH, Yu XY, Chen GD (2017) Hybrid force/position control method for robotic polishing based on passive compliance structure. Robot 39(6):776–785. https://doi.org/10.13973/j.cnki.robot.2017.0776

    Article  CAS  Google Scholar 

  40. Jq HAN (2009) From PID to active disturbance rejection control. Ieee T Ind Electron 56(3):900–906. https://doi.org/10.1109/TIE.2008.2011621

    Article  Google Scholar 

  41. Zhang LJ, Hu RQ, Yi WM (2017) Research on force sensing for the end-load of industrial robot based on a 6-axis force/torque sensor. Acta Autom Sin 43(3):439–447. https://doi.org/10.16383/j.aas.2017.c150753

    Article  Google Scholar 

  42. Tian G, Gao ZQ (2007) Frequency response analysis of active disturbance rejection based control system. IEEE Int Conf Control Appl. Singapore 1595–1599. https://doi.org/10.1109/CCA.2007.4389465

  43. Nakayama H, Ishida Y, Matsumoto N (2018) Filtered Smith predictor using disturbance compensator for first and second-order plants with time-delay. 2018 9th IEEE Control and System Graduate Research Colloquium (ICSGRC). Shah Alam, Malaysia 132–135. https://doi.org/10.1109/ICSGRC.2018.8657588

  44. Yao DY, Li HY, Lu RQ, Shi Y (2020) Distributed sliding-mode tracking control of second-order nonlinear multiagent systems: an event-triggered approach. IEEE T Cybern 50(9):3892–3902. https://doi.org/10.1109/TCYB.2019.2963087

    Article  Google Scholar 

  45. Wang S, Cao YT, Huang TW, Chen YR, Li P, Wen SP (2020) Sliding mode control of neural networks via continuous or periodic sampling event-triggering algorithm. Neural Netw 121:140–147. https://doi.org/10.1016/j.neunet.2019.09.001

    Article  PubMed  Google Scholar 

Download references

Funding

This work is jointly funded by National Key Research and Development Program of China (Grant numbers 2019YFB1311104) and Hebei Province Graduate Innovation Funding Project (Grant numbers CXZZSS2023023).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Kailiang Shen: Conceptualization, Methodology; Writing—original draft; Shijie Dai: Resources, Validation, Supervision; Wenbin Ji: Writing—review & editing; Ruiqin Wang: Investigation, Supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shijie Dai.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All authors agree to participate.

Consent for publication

All authors agree to publish.

Conflicts of interest/Competing interests

The authors have no conflicts or competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, K., Dai, S., Ji, W. et al. Study on the constant force control of aero-engine blade grinding robot considering time delay. Int J Adv Manuf Technol 131, 1427–1447 (2024). https://doi.org/10.1007/s00170-024-13029-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13029-5

Keywords

Navigation