Skip to main content
Log in

Ultrasonic vibration–assisted chatter suppression for deep hole boring of stainless steel

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Due to the low rigidity of the boring bar with a large length-to-diameter ratio, chatter easily occurs during deep hole boring. In this paper, an ultrasonic vibration boring bar with a length-to-diameter ratio greater than 10 is designed to suppress the chatter during the boring operation of deep holes. First, the dynamic model of the boring operation is built to guide the design of the ultrasonic vibration boring bar. Then, the optimal design of structure parameter of the ultrasonic vibration boring bar is performed by the finite element method, and then the optimized boring bar is manufactured. Finally, the vibration performance test and cutting experiments are carried out to verify the machining capability of the bar. The experimental results show that the ultrasonic vibration boring bar can reduce the cutting force by about 35%, improve the system stability, and increase the quality of the relative machined surface by about 43%, which demonstrate the feasibility of chatter suppression of the developed ultrasonic vibration boring bar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376. https://doi.org/10.1016/j.ijmachtools.2011.01.001

    Article  Google Scholar 

  2. Taylor FW (1906) On the art of cutting metals. ASME 28:31–279. https://doi.org/10.1115/1.4060388

    Article  Google Scholar 

  3. Zhang CJ, Ren YS, Ji SJ, Zhang JF (2020) Analysis of the vibration and chatter stability of a tapered composite boring bar. Shock Vib 2020:1–11. https://doi.org/10.1155/2020/4190806

    Article  CAS  Google Scholar 

  4. Hayati S, Hajaliakbari M, Rajabi Y, Rasaee S (2018) Chatter reduction in slender boring bar via a tunable holder with variable mass and stiffness. Proc Inst Mech Eng B J Eng Manuf 232(12):2098–2108. https://doi.org/10.1177/0954405417690554

    Article  Google Scholar 

  5. Ghorbani S, Rogov VA, Carluccio A, Belov PS (2019) The effect of composite boring bars on vibration in machining process. Int J Adv Manuf Technol 105(1):1157–1174. https://doi.org/10.1007/s00170-019-04298-6

    Article  Google Scholar 

  6. Chen F, Hanifzadegan M, Altintas Y, Lu X (2015) Active damping of boring bar vibration with a magnetic actuator. IEEE ASME Trans Mechatron 20(6):2783–2794. https://doi.org/10.1109/TMECH.2015.2393364

    Article  Google Scholar 

  7. Bak C, Son H (2018) Magnetostrictive actuator for chatter vibration suppression of boring bar. Inter Confere AIM: Auckland, New Zealand, pp 103–106. https://doi.org/10.1109/AIM.2018.8452250

  8. Matsubara A, Maeda M, Yamaji I (2014) Vibration suppression of boring bar by piezoelectric actuators and LR circuit. CIRP Ann Manuf Technol 63(1):373–376. https://doi.org/10.1016/j.cirp.2014.03.132

    Article  Google Scholar 

  9. Saleh MK, Nejatpour M, Acar HY, Lazoglu I (2021) A new magnetorheological damper for chatter stability of boring tools. J Mater Process Technol 289:116931. https://doi.org/10.1016/j.jmatprotec.2020.116931

    Article  CAS  Google Scholar 

  10. Li L, Sun B, Hua H (2019) Analysis of the vibration characteristics of a boring bar with a variable stiffness dynamic vibration absorber. Shock Vib 2019(9):1–13. https://doi.org/10.1155/2019/5284194

  11. Ding K, Li QL, Lei WN, Zhang CD, Xu MZ, Wang X (2022) Design of a defined grain distribution brazed diamond grinding wheel for ultrasonic assisted grinding and experimental verification. Ultrasonics 118:106577. https://doi.org/10.1016/j.ultras.2021.106577

    Article  CAS  PubMed  Google Scholar 

  12. Zou P, Xu YS, He Y, Chen MF, Wu H (2015) Experimental investigation of ultrasonic vibration assisted turning of 304 austenitic stainless steel. Shock Vib 2015:1–19. https://doi.org/10.1155/2015/817598

    Article  Google Scholar 

  13. Zhou M, Ngoi BKA, Yusoff MN, Wang XJ (2006) Tool wear and surface finish in diamond cutting of optical glass. J Mater Process Technol 174(1–3):29–33. https://doi.org/10.1016/j.jmatprotec.2005.02.248

    Article  CAS  Google Scholar 

  14. Kim GD, Loh BG (2007) An ultrasonic elliptical vibration cutting device for micro V-groove machining: kinematical analysis and micro V-groove machining characteristics. J Mater Process Technol 190(1–3):181–188. https://doi.org/10.1016/j.jmatprotec.2007.02.047

    Article  CAS  Google Scholar 

  15. Dong GJ, Wang L, Li C, Yu YF (2020) Investigation on ultrasonic elliptical vibration boring of deep holes with large depth–diameter ratio for high-strength steel 18Cr2Ni4WA. Int J Adv Manuf Technol 108(5):1527–1539. https://doi.org/10.1007/s00170-020-05531-3

    Article  Google Scholar 

  16. Lotfi M, Amini S, Aghayar Z, Sajjady S, Farid A (2020) Effect of 3D elliptical ultrasonic assisted boring on surface integrity. Measurement 163:108008. https://doi.org/10.1016/j.measurement.2020.108008

    Article  Google Scholar 

  17. Kurniawan R, Kumaran ST, Ko TJ (2021) Finite element analysis in ultrasonic elliptical vibration cutting (UEVC) during micro-grooving in AISI 1045. Int J Precis Eeg Manuf 22:1497–1515. https://doi.org/10.1007/s12541-021-00554-6

    Article  Google Scholar 

  18. Ma C, Ma J, Shamoto E, Moriwaki T (2011) Analysis of regenerative chatter suppression with adding the ultrasonic elliptical vibration on the cutting tool. Precis Eng 35(2):329–338. https://doi.org/10.1016/j.precisioneng.2010.12.004

    Article  Google Scholar 

  19. Li X, Zhang DY (2006) Ultrasonic elliptical vibration transducer driven by single actuator and its application in precision cutting. J Mater Process Technol 180(1–3):91–95. https://doi.org/10.1016/j.jmatprotec.2006.05.007

    Article  ADS  CAS  Google Scholar 

  20. Ma CX, Shamoto E, Moriwaki T (2004) Study on the thrust cutting force in ultrasonic elliptical vibration cutting. Mater Sci 471:396–400. https://doi.org/10.4028/www.scientific.net/MSF.471-472.396

    Article  Google Scholar 

  21. Zuo CM, Zhou XQ, Liu Q, Wang RQ, Lin JQ, Xu P, Zhang X (2018) Analytical topography simulation of micro/nano textures generated on freeform surfaces in double-frequency elliptical vibration cutting based diamond turning. J Manuf Sci Eng 140(10):101010. https://doi.org/10.1115/1.4040616

  22. Xiao M, Karube S, Soutome T, Sato K (2002) Analysis of chatter suppression in vibration cutting. Int J Mach Tools Manuf 42(15):1677–1685. https://doi.org/10.1016/S0890-6955(02)00077-9

    Article  Google Scholar 

  23. Jung H, Hayasaka T, Shamoto E (2016) Mechanism and suppression of frictional chatter in high-efficiency elliptical vibration cutting. CIRP Ann Manuf Technol 65(1):369–372. https://doi.org/10.1016/j.cirp.2016.04.103

    Article  Google Scholar 

  24. Merchant ME (1944) Basic mechanics of the metal-cutting process. J Appl Mech 11(3):A168–A175. https://doi.org/10.1115/1.4009380

    Article  Google Scholar 

  25. Sui H, Zhang DY, Chen HW, Zhang XY (2016) Effect of ultrasonic vibration cutting on coupled chatter. Journal of Aeronautics and Astronautics 37(5):1696–1704. https://doi.org/10.7527/S1000-6893,2015.0230

    Article  Google Scholar 

  26. Jiao F, Liu X, Zhao CY, Zhang X (2011) Experimental study on the surface micro-geometrical characteristics of quenched steel in ultrasonic assisted turning. Adv Materials Res 189:4059–4063

    Article  Google Scholar 

  27. Yin S, Dong Z, Bao Y, Kang R, Du W, Pan Y, Jin Z (2021) Development and optimization of ultrasonic elliptical vibration cutting device based on single excitation. J Manuf Sci Eng 143(8):081005. https://doi.org/10.1115/1.4049965

    Article  Google Scholar 

  28. Ma CX, Shamoto E, Moriwaki T, Zhang YH, Wang LJ (2005) Suppression of burrs in turning with ultrasonic elliptical vibration cutting. Int J Mach Tools Manuf 45(11):1295–1300. https://doi.org/10.1016/j.ijmachtools.2005.01.011

    Article  Google Scholar 

  29. Wang WK, Wan M, Zhang WH, Yang Y (2022) Chatter detection methods in the machining processes: a review. J Manuf Process 77:240–259. https://doi.org/10.1016/j.jmapro.2022.03.018

    Article  Google Scholar 

Download references

Funding

The authors would like to thank the financial support by the National Natural Science Foundation of China (52075275, 51675289), the Natural Science Foundation of Shandong Province (ZR2022QE241, ZR2021QE230), the Talent Research Project of Qilu University of Technology (Shandong Academy of Sciences) (2023RCKY124), and the Basic Research Project of Science, Education and Industry Integration Pilot Project of Qilu University of Technology (Shandong Academy of Sciences) (2022PX044, 2022PY007, 2023PX026, 2023PY021).

Author information

Authors and Affiliations

Authors

Contributions

HL: writing—original draft, writing—review and editing. YX: conceptualization, writing—review and editing, project administration. GS: validation. BL: methodology. JD: methodology.

Corresponding authors

Correspondence to Yan Xia or Guosheng Su.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Xia, Y., Su, G. et al. Ultrasonic vibration–assisted chatter suppression for deep hole boring of stainless steel. Int J Adv Manuf Technol 131, 1691–1703 (2024). https://doi.org/10.1007/s00170-024-13016-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-13016-w

Keywords

Navigation