Skip to main content
Log in

Study of spray-mist-assisted laser processing of micro-structures on CVD diamond surface

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Micro-structured chemical vapor deposition (CVD) diamonds with different geometric features tend to demonstrate outstanding performance and functionality in certain aspects. In this paper, an ablation model for machining micro-structures on the surface of CVD diamond coatings using spray-mist-assisted laser processing was established. Firstly, the principle of spray-mist-assisted laser processing was described, where the water film formed by spray impingement was taken into account for its influence on the laser beam through reflection and absorption, resulting in energy losses, as well as refraction causing focal plane shift. Next, a single groove ablation model was developed based on Gaussian optics and ablation threshold theory. Subsequently, the model validity was verified through laser ablation experiments. Meanwhile, the influences of laser parameters, including laser power, scanning speed, and defocusing distance on the machining characteristics, were discussed. Finally, utilizing raster scanning and incorporating the matrix convolution method, the laser ablation model was further extended. Micro-structures with parabolic-like profiles were achieved, indicating the applicability of this approach in guiding the fabrication of micro-structures with specific contours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Evans CJ, Bryan JB (1999) “Structured”, “textured” or “engineered” surfaces. CIRP Ann 48(2):541–556. https://doi.org/10.1016/S0007-8506(07)63233-8

    Article  Google Scholar 

  2. Gäbler J, Pleger S (2010) Precision and micro CVD diamond-coated grinding tools. Int J Mach Tools Manuf 50(4):420–424. https://doi.org/10.1016/j.ijmachtools.2009.10.008

    Article  Google Scholar 

  3. Brinksmeier E, Riemer O, Antsupov G, Meiners K, Gäbler J (2012) Manufacture and application performance of precision grinding wheels with CVD coated abrasive layers. Int J Abras Technol 5(4):299–314. https://doi.org/10.1504/IJAT.2012.052038

    Article  Google Scholar 

  4. Butler-Smith PW, Axinte D, Pacella M, Fay MW (2013) Micro/nanometric investigations of the effects of laser ablation in the generation of micro-tools from solid CVD diamond structures. J Mater Process Technol 213(2):194–200. https://doi.org/10.1016/j.jmatprotec.2012.08.010

    Article  Google Scholar 

  5. Uhlmann E, Schröter D (2021) Micro-texture trajectory dependent pressure distribution of CVD diamond thick film cutting tools during turning of Ti-6Al-4V. Procedia CIRP 102:49–54. https://doi.org/10.1016/j.procir.2021.09.009

    Article  Google Scholar 

  6. Guo B, Zhao Q, Fang X (2014) Precision grinding of optical glass with laser micro-structured coarse-grained diamond wheels. J Mater Process Technol 214(5):1045–1051. https://doi.org/10.1016/j.jmatprotec.2013.12.013

    Article  Google Scholar 

  7. Eltawahni HA, Olabi AG, Benyounis KY (2011) Assessment and optimization of CO2 laser cutting process of PMMA. In AIP conference proceedings 1315(1):1553-1558. https://doi.org/10.1063/1.3552409

    Chapter  Google Scholar 

  8. Chichkov BN, Momma C, Nolte S, Von Alvensleben F, Tünnermann A (1996) Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A Mater Sci Process 63:109–115. https://doi.org/10.1007/BF01567637

    Article  Google Scholar 

  9. Ohfuji H, Okuchi T, Odake S, Kagi H, Sumiya H, Irifune T (2010) Micro-/nanostructural investigation of laser-cut surfaces of single-and polycrystalline diamonds. Diam Relat Mater 19(7-9):1040–1051. https://doi.org/10.1016/j.diamond.2010.02.015

    Article  Google Scholar 

  10. Su Y, Li L, He N, Zhao W (2014) Experimental study of fiber laser surface texturing of polycrystalline diamond tools. Int J Refract Met Hard Mater 45:117–124. https://doi.org/10.1016/j.ijrmhm.2014.03.001

    Article  Google Scholar 

  11. Liu X, Natsume K, Maegawa S, Itoigawa F (2020) Micromachining of polycrystalline CVD diamond-coated cutting tool with femtosecond laser. J Adv Mech Des Syst 14(4):JAMDSM0059. https://doi.org/10.1299/jamdsm.2020jamdsm0059

    Article  Google Scholar 

  12. Fasasi AY, Mwenifumbo S, Rahbar N, Chen J, Li M, Beye AC, Arnold CB, Soboyejo WO (2009) Nano-second UV laser processed micro-grooves on Ti6Al4V for biomedical applications. Mater Sci Eng C 29(1):5–13. https://doi.org/10.1016/j.msec.2008.05.002

    Article  Google Scholar 

  13. Guo B, Wu M, Zhao Q, Liu H, Zhang J (2018) Improvement of precision grinding performance of CVD diamond wheels by micro-structured surfaces. Ceram Int 44(14):17333–17339. https://doi.org/10.1016/j.ceramint.2018.06.197

    Article  Google Scholar 

  14. Guo B, Zhang J, Wu M, Zhao Q, Liu H, Monier A, Wang J (2020) Water assisted pulsed laser machining of micro-structured surface on CVD diamond coating tools. J Manuf Process 56:591–601. https://doi.org/10.1016/j.jmapro.2020.04.066

    Article  Google Scholar 

  15. Guo Z, Guo B, Zhao Q, Liu W, Zheng Q (2021) Optimisation of spray-mist-assisted laser machining of micro-structures on CVD diamond coating surfaces. Ceram Int 47(15):22108–22120. https://doi.org/10.1016/j.ceramint.2021.04.232

    Article  Google Scholar 

  16. Markauskas E, Gečys P (2018) Thin water film assisted glass ablation with a picosecond laser. Procedia CIRP 74:328–332. https://doi.org/10.1016/j.procir.2018.08.126

    Article  Google Scholar 

  17. Hoyne AC, Nath C, Kapoor SG (2013) Characterization of fluid film produced by an atomization-based cutting fluid spray system during machining. J Manuf Sci Eng 135(5):051006. https://doi.org/10.1115/1.4025012

    Article  Google Scholar 

  18. Kaakkunen JJJ, Silvennoinen M, Paivasaari K, Vahimaa P (2011) Water-assisted femtosecond laser pulse ablation of high aspect ratio holes. Phys Procedia 12:89–93. https://doi.org/10.1016/j.phpro.2011.03.110

    Article  Google Scholar 

  19. Silvennoinen M, Kaakkunen JJJ, Paivasaari K, Vahimaa P (2013) Water spray assisted ultrashort laser pulse ablation. Appl Surf Sci 265:865–869. https://doi.org/10.1016/j.apsusc.2012.11.135

    Article  Google Scholar 

  20. López JML, Bakrania A, Coupland J, Marimuthu S (2016) Droplet assisted laser micromachining of hard ceramics. J Eur Ceram Soc 36(11):2689–2694. https://doi.org/10.1016/j.jeurceramsoc.2016.04.021

    Article  Google Scholar 

  21. Jang D, Kim D (2006) Liquid-assisted excimer laser micromaching for ablation enhancement and debris reduction. J Laser Micro Nanoeng 1(3):221–225. https://doi.org/10.2961/jlmn.2006.03.0014

    Article  Google Scholar 

  22. Zhou L, Huang P, Jiao H, Zhang G, Zhao Z, Lin Z, Huang Y, Zhou J, Long Y (2023) Study on mechanism of spray-mist-assisted laser processing of carbon fiber reinforced plastic. Opt Laser Technol 158:108821. https://doi.org/10.1016/j.optlastec.2022.108821

    Article  Google Scholar 

  23. Yilbas BS (2004) Laser cutting quality assessment and thermal efficiency analysis. J Mater Process Technol 155:2106–2115. https://doi.org/10.1016/j.jmatprotec.2004.04.194

    Article  Google Scholar 

  24. Li L, Sobih M, Crouse PL (2007) Striation-free laser cutting of mild steel sheets. CIRP Ann 56(1):193–196. https://doi.org/10.1016/j.cirp.2007.05.047

    Article  Google Scholar 

  25. Shankar U, Babu NR (2018) A model for predicting the geometry of crater on grinding wheel surface ablated with a single pulsed laser. Procedia Manuf 26:509–520. https://doi.org/10.1016/j.promfg.2018.07.060

    Article  Google Scholar 

  26. Liang J, Liu W, Li Y, Luo Z, Pang D (2018) A model to predict the ablation width and calculate the ablation threshold of femtosecond laser. Appl Surf Sci 456:482–486. https://doi.org/10.1016/j.apsusc.2018.06.093

    Article  Google Scholar 

  27. Cha D, Axinte D, Billingham J (2019) Geometrical modelling of pulsed laser ablation of high performance metallic alloys. Int J Mach Tools Manuf 141:78–88. https://doi.org/10.1016/j.ijmachtools.2019.04.004

    Article  Google Scholar 

  28. Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing…. Annu Rev Fluid Mech 38:159–192. https://doi.org/10.1146/annurev.fluid.38.050304.092144

    Article  MathSciNet  Google Scholar 

  29. Li X, Guan Y (2020) Theoretical fundamentals of short pulse laser–metal interaction: a review. Nanotechnol Precis Eng 3(3):105–125. https://doi.org/10.1016/j.npe.2020.08.001

    Article  Google Scholar 

  30. Krstulović N, Shannon S, Stefanuik R, Fanara C (2013) Underwater-laser drilling of aluminum. Int J Adv Manuf Technol 69:1765–1773. https://doi.org/10.1007/s00170-013-5141-4

    Article  Google Scholar 

  31. Tangwarodomnukun V (2017) Overflow-assisted laser machining of titanium alloy: surface characteristics and temperature field modeling. Int J Adv Manuf Technol 88:147–158. https://doi.org/10.1007/s00170-016-8728-8

    Article  Google Scholar 

  32. Tangwarodomnukun V, Wuttisarn T (2017) Evolution of milled cavity in the multiple laser scans of titanium alloy under a flowing water layer. Int J Adv Manuf Technol 92:293–302. https://doi.org/10.1007/s00170-017-0125-4

    Article  Google Scholar 

  33. Xingcai L, Kun N (2018) Effectively predict the solar radiation transmittance of dusty photovoltaic panels through Lambert-Beer law. Renew Energy 123:634–638. https://doi.org/10.1016/j.renene.2018.02.046

    Article  Google Scholar 

  34. Mullick S, Madhukar YK, Kumar S, Shukla DK, Nath AK (2011) Temperature and intensity dependence of Yb-fiber laser light absorption in water. Appl Opt 50(34):6319–6326. https://doi.org/10.1364/AO.50.006319

    Article  Google Scholar 

  35. Tian Y, Xue B, Song J, Lu Y, Li Y, Zheng R (2017) Comparative investigation of laser-induced breakdown spectroscopy in bulk water using 532- and 1064-nm lasers. Appl Phys Express 10(7):072401. https://doi.org/10.7567/APEX.10.072401

    Article  Google Scholar 

  36. Hirleman ED, Stevenson WH (1978) Intensity distribution properties of a Gaussian laser beam focus. Appl Opt 17(21):3496–3499. https://doi.org/10.1364/AO.17.003496

    Article  Google Scholar 

  37. Wu M, Guo B, Zhao Q, Fan R, Dong Z, Yu X (2018) The influence of the focus position on laser machining and laser micro-structuring monocrystalline diamond surface. Opt Lasers Eng 105:60–67. https://doi.org/10.1016/j.optlaseng.2018.01.002

    Article  Google Scholar 

  38. Heiroth S, Koch J, Lippert T, Wokaun A, Günther D, Garrelie F, Guillermin M (2010) Laser ablation characteristics of yttria-doped zirconia in the nanosecond and femtosecond regimes. J Appl Phys 107(1):014908. https://doi.org/10.1063/1.3275868

    Article  Google Scholar 

  39. Mannion PT, Magee J, Coyne E, O’connor GM, Glynn TJ (2004) The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl Surf Sci 233(1-4):275–287. https://doi.org/10.1016/j.apsusc.2004.03.229

    Article  Google Scholar 

  40. Guo B, Zhao Q, Yu X (2014) Surface micro-structuring of coarse-grained diamond wheels by nanosecond pulsed laser for improving grinding performance. Int J Precis Eng Manuf 15:2025–2030. https://doi.org/10.1007/s12541-014-0559-7

    Article  Google Scholar 

  41. Dong Z, Cheng H, Tam HY (2015) Robust linear equation dwell time model compatible with large scale discrete surface error matrix. Appl Opt 54(10):2747–2756. https://doi.org/10.1364/AO.54.002747

    Article  Google Scholar 

  42. Wang C, Yang W, Wang Z, Yang X, Hu C, Zhong B, Guo Y, Xu Q (2014) Dwell-time algorithm for polishing large optics. Appl Opt 53(21):4752–4760. https://doi.org/10.1364/AO.53.004752

    Article  Google Scholar 

Download references

Funding

This work was supported by Enterprise Innovation and Development Joint Program of the National Natural Science Foundation of China (No. U20B2032), National Natural Science Foundation of China (No. 51875135), and Open Research Foundation of State Key Laboratory of Intelligent Manufacturing Equipment and Technology in Huazhong University of Science and Technology, China (IMETKF2023005).

Author information

Authors and Affiliations

Authors

Contributions

BG: conceptualization, methodology, formal analysis, supervision, writing—review and editing, writing—original draft. ZG: conceptualization, methodology, formal analysis, visualization, writing—original draft, writing—review and editing. ZZ: conceptualization, methodology, formal analysis, investigation, data curation, writing—original draft. JJ: methodology, formal analysis, writing—original draft. QM: data curation, writing—original draft. QZ: resources, data curation. ZZ: Resources, data curation, writing—original draft. KL: resources, supervision, writing—original draft. LX: visualization, writing—original draft.

Corresponding author

Correspondence to Bing Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, B., Guo, Z., Zhang, Z. et al. Study of spray-mist-assisted laser processing of micro-structures on CVD diamond surface. Int J Adv Manuf Technol 130, 3851–3865 (2024). https://doi.org/10.1007/s00170-024-12958-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-024-12958-5

Keywords

Navigation