Abstract
Estimating the execution time of assembly task sequences of a new geometric model is an essential prerequisite for task allocation and resource planning decisions in smart multi-robotic assembly cells. This paper discusses an optimization-based method to estimate the execution time of a full sequence of assembly tasks, including picking, aligning, and insertion. Task descriptions, joint space trajectories, assembly task-related motions, and process conditions are used as inputs for the method. The required descriptions of assembly tasks are parametrized, and the resulting function is then combined with the process conditions, assembly task-relevant motions, and the capabilities of the resources in the robotic assembly cell to estimate the execution times. The advantage of the method is the possibility of determining the execution time of an assembly task, taking into account the capabilities of the robot, before assigning it to the multi-robot assembly station. The proposed method is demonstrated experimentally by using a CAD model with the information of Fanuc robot CR7iA/L. The method is implemented in MATLAB using AMPL-API and tested. To determine its effectiveness, the outcomes of the proposed method are compared to the values of the 3-D Fanuc Roboguide (RG). Finally, further research steps to improve the accuracy of the total time for the entire assembly sequence are also discussed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Availability of data and materials
Not applicable
Code availability
Not applicable
References
Ranz F, Hummel V, Sihn W (2017) Capability-based task allocation in human-robot collaboration. Procedia Manufac 9:182–189
Khan AS, Khan R, Saleem W, Salah B, Alkhatib S (2022) Modeling and optimization of assembly line balancing type 2 and E (SLBP-2E) for a reconfigurable manufacturing system. Process 10(8):1582
Raatz A, Blankemeyer S, Recker T, Pischke D, Nyhuis P (2020) Task scheduling method for HRC workplaces based on capabilities and execution time assumptions for robots. CIRP Ann 69(1):13–16
Lamon E, De Franco A, Peternel L, Ajoudani A (2019) A capability-aware role allocation approach to industrial assembly tasks. IEEE Robot Autom Lett 4(4):3378–3385
Peavey EK, Zoss J, Watkins N (2012) Simulation and mock-up research methods to enhance design decision making. Health Environ Res Des J 5(3):133–144
Hold P, Sihn W (2016) Towards a model to identify the need and the economic efficiency of digital assistance systems in cyber-physical assembly systems. IEEE/ Int Work Cyber-Phys Prod Syst 1–4
Faber M, Mertens A, Schlick CM (2017) Cognition-enhanced assembly sequence planning for ergonomic and productive human-robot collaboration in self-optimizing assembly cells. Prod Eng 11(2):145–154
Freitag M, Hildebrandt T (2016) Automatic design of scheduling rules for complex manufacturing systems by multi-objective simulation-based optimization. CIRP Ann 65(1):433–436
Kaelbling LP, Lozano-Pérez T (2011) Hierarchical task and motion planning in the now. IEEE Int Conf Robot Autom (1470–1477)
Srivastava S, Fang E, Riano L, Chitnis R, Russell S, Abbeel P (2014) Combined task and motion planning through an extensible planner-independent interface layer. IEEE Int Conf Robot Autom (639–646)
De Silva L, Lallement R, Alami R, (2015) The HATP hierarchical planner: formalisation and an initial study of its usability and practicality. IEEE/RSJ Int Conf Intell Robot Syst (6465–6472)
Chen H, Li J, Wan W, Huang Z, Harada K (2020) Integrating combined task and motion planning with compliant control: successfully conducting planned dual-arm assembly motion using compliant peg-in-hole control. Int J Intell Robot Appl 4:149–163
Fukuda K, Ramirez-Alpizar I.G, Yamanobe N, Petit D, Nagata K, Harada K (2019) Recognition of assembly tasks based on the actions associated to the manipulated objects. IEEE/SICE Int Symp Syst Integr (SII) (193–198)
Müller R, Scholer M, Karkowski M (2019) Generic automation task description for flexible assembly systems. Procedia CIRP 81:730–735
Naumann M, Bengel M, Verl A, (2010) Automatic generation of robot applications using a knowledge integration framework. Int Symp Robot ROBOTIK (1–8)
Malakuti S, Bock J, Weser M, Venet P, Zimmermann P, Wiegand M, Grothoff J, Wagner C, Bayha A (2018) Challenges in skill-based engineering of industrial automation systems. IEEE 23rd Int Conf Emerg Technol Fact Autom (ETFA) (1:67–74)
Jacobsson L, Malec J, Nilsson K (2016) Modularization of skill ontologies for industrial robots. In: Proceedings of international symposium on robotics (pp 1–6)
Perzylo A, Somani N, Rickert M, Knoll A (2015) An ontology for CAD data and geometric constraints as a link between product models and semantic robot task descriptions. IEEE/rsj Int Conf Intell Robot Syst (iros) (pp 4197–4203)
Saeed M, Demasure T, Hoedt S, Aghezzaf E.H, Cottyn J Spline-based trajectory generation to estimate execution time in a robotic assembly cell. Int J Adv Manuf Technol 121(9-10):6921–6935
Järvenpää E (2012) Capability-based adaptation of production systems in a changing environment. Tampere Univ Technol
Bayha A, Bock J, Boss B, Diedrich C, Malakuti S (2020) Describing capabilities of Industrie 4.0 components: joint white paper between plattform Industrie 4.0, VDI GMA 7.20, BaSys 4.2
Keddis N, Kainz G, Zoitl A (2014) Capability-based planning and scheduling for adaptable manufacturing systems. IEEE Emerg Technol Fact Autom (pp 1–8)
Järvenpää E, Torvinen S (2013) Capability-based approach for evaluating the impact of product requirement changes on the production system. Flex Autom Intell Manuf (173–185)
Björkelund A, Bruyninckx H, Malec J, Nilsson K, Nugues P (2012) Knowledge for intelligent industrial robots. Design Intell Robot (12:02)
Schou C, Andersen RS, Chrysostomou D, Bøgh S, Madsen O (2018) Skill-based instruction of collaborative robots in industrial settings. Robot Comput-Integr Manuf 53:72–80
Bänziger T, Kunz A, Wegener K (2020) Optimizing human-robot task allocation using a simulation tool based on standardized work descriptions. J Intell Manuf 1635–1648
Cutting-Decelle AF, Young RI, Michel JJ, Grangel R, Le Cardinal J, Bourey JP (2007) A product-process-resource based approach for managing modularity in production management. Concurr Eng 15(2):217–235
Michalos G, Makris S, Chryssolouris G (2015) The new assembly system paradigm. Int J Comput Integr Manuf 28(12):1252–1261
Nägele F, Halt L, Tenbrock P, Pott A (2018) A prototype-based skill model for specifying robotic assembly tasks. IEEE Int Conf Robot Autom (ICRA) (pp 558–565)
Thomas U, Hirzinger G, Rumpe B, Schulze C, Wortmann A (2013) A new skill based robot programming language using UML/P Statecharts. IEEE Int Conf Robot Autom (461–466)
Faccio M, Bottin M, Rosati G (2019) Collaborative and traditional robotic assembly: a comparison model. Int J Adv Manuf Technol 102:1355–1372
Schröter D, Kuhlang P, Finsterbusch T, Kuhrke B, Verl A (2016) Introducing process building blocks for designing human robot interaction work systems and calculating accurate cycle times. Procedia CIRP 44:216–221
WeSSkamp V, Seckelmann T, Barthelmey A, Kaiser M, Lemmerz K, Glogowski P, Kuhlenköter B Deuse J (2019) Development of a sociotechnical planning system for human-robot interaction in assembly systems focusing on small and medium-sized enterprises. Procedia CIRP 81:1284–1289
Michalos G, Spiliotopoulos J, Makris S, Chryssolouris G (2018) A method for planning human robot shared tasks. J Manuf Sci Technol 22:76–90
Gonnermann C, Weth J, Reinhart G (2020) Skill modeling in cyber-physical production systems for process monitoring. Procedia CIRP 93:1376–1381
Backhaus J, Reinhart G (2017) Digital description of products, processes and resources for task-oriented programming of assembly systems. Journal of Intelligent Manufacturing 28:1787–1800
Lemmerz K, Glogowski P, Hypki A, Kuhlenkoetter B (2018) Functional integration of a robotics software framework into a human simulation system. Int Symp Robot (1–8)
Choi CK, Ip WH (1999) A comparison of MTM and RTM. Work Study 48(2):57–61
Glogowski P, Lemmerz K, Schulte L, Barthelmey A, Hypki A, Kuhlenkötter B, Deuse J (2017) Task-based simulation tool for human-robot collaboration within assembly systems. In: Tagungsband des 2. Kongresses montage handhabung industrieroboter (155–163)
Bokranz R, Landau K (2012) Handbuch industrial engineering. Produktivitätsmanagement mit MTM 2:2
Komenda T, Ranz F, Sihn W (2019) Influence of task allocation patterns on safety and productivity in human-robot-collaboration. Ind Simul Conf 85–89
Pellegrinelli S, Pedrocchi N (2018) Estimation of robot execution time for close proximity human-robot collaboration. Integr Comput-Aided Eng 25(1):81–96
Kuhlang P (2015). Modellierung menschlicher arbeit im industrial engineering: grundlagen, praxiserfahrungen und perspektiven;[mit der Neuentwicklung MTM-HWD]. Ergonomia
Mateus JC, Claeys D, Limère V, Cottyn J, Aghezzaf EH (2020) Base part centered assembly task precedence generation. The International Journal of Advanced Manufacturing Technology 107:607–616
Komenda T, Brandstötter M, Schlund S (2021) A comparison of and critical review on cycle time estimation methods for human-robot work systems. Procedia CIRP 104:1119–1124
Kuhlang P, Erohin O, Krebs M, Deuse J, Sihn W (2014) Morphology of time data management-systematic design of time data management processes as fundamental challenge in industrial engineering. Int J Ind Syst Eng 16(4):415–432
Faccio M, Bottin M, Rosati G (2019) Collaborative and traditional robotic assembly: a comparison model. Int J Adv Manuf Technol 102:1355–1372
Cherubini A, Passama R, Crosnier A, Lasnier A, Fraisse P (2016) Collaborative manufacturing with physical human-robot interaction. Robot Comput-Integr Manuf 40:1–13
Salunkhe O, Stahre J, Romero D, Li D, Johansson B (2023) Specifying task allocation in automotive wire harness assembly stations for human-robot collaboration. Comput Ind Eng 184
Köcher A, Da Silva, and Fay A (2022) Modeling and executing production processes with capabilities and skills using ontologies and BPMN. IEEE 27th international conference on emerging technologies and factory automation (ETFA) (pp 1–8)
Chen H, Cheng H (2021) Online performance optimization for complex robotic assembly processes. J Manuf Process 72:544–552
Funding
This work is supported by the Higher Education Commission of Pakistan within the framework of HRDI-UESTP Scholarship Project.
Author information
Authors and Affiliations
Contributions
MS: conceptualization, methodology, software implementation, validation, visualization, writing—original draft. TD: extraction of data from Roboguide software. E-HA: optimization, project administration. JC: supervision, resources, writing—review and editing.
Corresponding author
Ethics declarations
Ethics approval
Not applicable
Consent to participate
Not applicable
Consent for publication
The authors give consent to publish.
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Saeed, M., Demasure, T., Aghezzaf, EH. et al. Optimization-based estimation of the execution time of a robotic assembly task sequence. Int J Adv Manuf Technol 130, 5315–5328 (2024). https://doi.org/10.1007/s00170-023-12925-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00170-023-12925-6