Skip to main content
Log in

Influence of cutting tool geometry when milling Nomex honeycomb structure

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The use of Nomex honeycomb structures is essential for the aerospace and aeronautics industry because of their high out-of-plane strength and their advantageous weight/rigidity ratio. Nevertheless, milling these structures presents technical and scientific challenges, including premature wear of cutting tools and the quality of the machined surface. In general, the machining process relies on carrying out experimental tests. However, the high rotation speed of the cutting tool makes it difficult to monitor the cutting process correctly. Thus, it has become imperative to adopt reliable numerical models to collect instantaneous and accurate physical data. For this purpose, a 3D finite element numerical model was developed using the Abaqus/Explicit software, taking into account the real conditions of the experiment. An experimental validation was carried out by analyzing the premature wear of the cutting tool. After having validated the numerical model, an in-depth analysis was carried out to evaluate the influence of the number of teeth of the cutting tool on the optimization of the machining of the Nomex honeycomb structure. This analysis specifically focused on the cutting forces, the quality of the machined surface, and the accumulation of chips in front of the cutting tool. The obtained results clearly underline that low feed rates improve the integrity of the cutting tool, while a limited number of cutting tool teeth significantly improves cutting forces and the quality of the machined surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Foo CC, Chai GB, Seah LK (2007) Mechanical properties of Nomex material and Nomex honeycomb structure. Compos Struct 80(4):588–594. https://doi.org/10.1016/j.compstruct.2006.07.010

    Article  Google Scholar 

  2. Kim DS, Lee JR (1997) Compressive mechanical properties of the nomex/thermoset honeycomb cores. Polym Adv Technol 8(1):1–7. https://doi.org/10.1002/(SICI)1099-1581(199701)8:1%3c1::AID-PAT601%3e3.0.CO;2-G

    Article  Google Scholar 

  3. Li Y (1995) The development and application of the Nomex honeycomb in Russia aerospace area. J Mater Eng 4:3–5

    Google Scholar 

  4. Liu L, Wang H, Guan Z (2015) Experimental and numerical study on the mechanical response of Nomex honeycomb core under transverse loading. Compos Struct 121:304–314. https://doi.org/10.1016/j.compstruct.2014.11.034

    Article  Google Scholar 

  5. Zarrouk T, Nouari M, Makich H (2023) Simulated study of the machinability of the nomex honeycomb structure. J Manuf Mater Process 7(1):28. https://doi.org/10.3390/jmmp7010028

    Article  Google Scholar 

  6. Sharma VK, Singh T, Rana M, Singh K (2022) Multi-output optimization during MQL based face milling of EN-31 steel employing Taguchi coupled grey relational analysis. Mater Today Proc 65:3216–3223. https://doi.org/10.1016/j.matpr.2022.05.376

    Article  Google Scholar 

  7. Devillez A, Lesko S, Mozer W (2004) Cutting tool crater wear measurement with white light interferometry. Wear 256(1–2):56–65. https://doi.org/10.1016/S0043-1648(03)00384-3

    Article  Google Scholar 

  8. El-Wardany TI, Gao D, Elbestawi MA (1996) Tool condition monitoring in drilling using vibration signature analysis. Int J Mach Tools Manuf 36(6):687–711. https://doi.org/10.1016/0890-6955(95)00058-5

    Article  Google Scholar 

  9. Ma K, Wang J, Zhang J, Feng P, Yu D, Ahmad S (2022) A force-insensitive impedance compensation method for giant magnetostriction ultrasonic cutting system of Nomex honeycomb composites. Compos Struct 294:115708. https://doi.org/10.1016/j.compstruct.2022.115708

    Article  Google Scholar 

  10. Nouari M (2000) Modélisation de l’usure par diffusion des outils de coupe en usinage grande vitesse. Université Paul Verlaine-Metz.

  11. Adin MŞ (2023) Performances of cryo-treated and untreated cutting tools in machining of AA7075 aerospace aluminium alloy. Eur Mech Sci 7(2):70–81. https://doi.org/10.26701/ems.1270937

    Article  Google Scholar 

  12. Zarrouk T, Salhi JE, Atlati S, Nouari M, Salhi M, Salhi N (2022) Modeling and numerical simulation of the chip formation process when machining Nomex. Environ Sci Pollut Res 1–8. https://doi.org/10.1007/s11356-021-13736-6

  13. Jaafar M, Atlati S, Makich H, Nouari M, Moufki A, Julliere B (2017) A 3D FE modeling of machining process of Nomex® honeycomb core: influence of the cell structure behaviour and specific tool geometry. Procedia Cirp 58:505–510. https://doi.org/10.1016/j.procir.2017.03.255

    Article  Google Scholar 

  14. Jaafar M, Makich H, Nouari M (2021) A new criterion to evaluate the machined surface quality of the Nomex® honeycomb materials. J Manuf Process 69:567–582. https://doi.org/10.1016/j.jmapro.2021.07.062

    Article  Google Scholar 

  15. Qiu K, Ming W, Shen L, An Q, Chen M (2017) Study on the cutting force in machining of aluminum honeycomb core material. Compos Struct 164:58–67. https://doi.org/10.1016/j.compstruct.2016.12.060

    Article  Google Scholar 

  16. Zarrouk T, Nouari M, Salhi JE, Makich H, Salhi M, Atlati S, Salhi N (2022) Optimization of the milling process for aluminum honeycomb structures. Int J Adv Manuf Technol 1–12. https://doi.org/10.1007/s00170-021-08495-0

  17. Zarrouk T, Salhi JE, Atlati S, Nouari M, Salhi M, Salhi N (2021) Study on the behavior law when milling the material of the Nomex honeycomb core. Mater Today Proc 45:7477–7485. https://doi.org/10.1016/j.matpr.2021.02.110

    Article  Google Scholar 

  18. Zarrouk T, Salhi JE, Nouari M, Salhi M, Chaabelasri E, Makich H, Salhi N (2022) Modeling machining of aluminum honeycomb structure. Int J Adv Manuf Technol 123(7–8):2481–2500. https://doi.org/10.1007/s00170-022-10350-9

    Article  Google Scholar 

  19. Zarrouk T, Salhi JE, Nouari M, Salhi M, Atlati S, Salhi N, Makich H (2021) Analysis of friction and cutting parameters when milling honeycomb composite structures. Adv Mech Eng 13(7):16878140211034840. https://doi.org/10.1177/16878140211034841

    Article  Google Scholar 

  20. Zarrouk T, Salhi JE, Nouari M, Salhi M, Kodad J (2023) Influence of the cutting tool geometry on milling aluminum honeycomb structures. Int J Adv Manuf Technol 126(1–2):313–324. https://doi.org/10.1007/s00170-023-11144-3

    Article  Google Scholar 

  21. Weizhou WU, Shipeng LI, Xuda QIN, Wentao LIU, Xin CUI, Hao LI, Haibao LIU (2023) Effects of fiber orientation on tool wear evolution and wear mechanism when cutting carbon fiber reinforced plastics. Chin J Aeronaut 36(5):549–565. https://doi.org/10.1016/j.cja.2022.09.003

    Article  Google Scholar 

  22. Fischer S, Drechsler K, Kilchert S, Johnson A (2009) Mechanical tests for foldcore base material properties. Compos A Appl Sci Manuf 40(12):1941–1952. https://doi.org/10.1016/j.compositesa.2009.03.005

    Article  Google Scholar 

  23. Seemann R, Krause D (2017) Numerical modelling of Nomex honeycomb sandwich cores at meso-scale level. Compos Struct 159:702–718. https://doi.org/10.1016/j.compstruct.2016.09.071

    Article  Google Scholar 

  24. Roy R, Park SJ, Kweon JH, Choi JH (2014) Characterization of Nomex honeycomb core constituent material mechanical properties. Compos Struct 117:255–266. https://doi.org/10.1016/j.compstruct.2014.06.033

    Article  Google Scholar 

  25. Heimbs S (2009) Virtual testing of sandwich core structures using dynamic finite element simulations. Comput Mater Sci 45(2):205–216. https://doi.org/10.1016/j.commatsci.2008.09.017

    Article  Google Scholar 

  26. Roy R, Nguyen KH, Park YB, Kweon JH, Choi JH (2014) Testing and modeling of Nomex™ honeycomb sandwich Panels with bolt insert. Compos B Eng 56:762–769. https://doi.org/10.1016/j.compositesb.2013.09.006

    Article  Google Scholar 

  27. Jaafar M (2018) Étude expérimentale et simulation numérique de l’usinage des matériaux en nids d’abeilles : application au fraisage des structures Nomex® et Aluminium (Doctoral dissertation, Université de Lorraine)

  28. Chung J, Waas AM (2002) Compressive response of honeycombs under in-plane uniaxial static and dynamic loading, Part 2: Simulations. AIAA J 40(5):974–980. https://doi.org/10.2514/2.1734

    Article  Google Scholar 

  29. Goldsmith W, Louie DL (1995) Axial perforation of aluminum honeycombs by projectiles. Int J Solids Struct 32(8–9):1017–1046. https://doi.org/10.1016/0020-7683(94)00188-3

    Article  Google Scholar 

  30. Kilchert S (2013) Nonlinear finite element modelling of degradation and failure in folded core composite sandwich structures. https://doi.org/10.18419/opus-3932

  31. Heimbs S (2008) Sandwichstrukturen mit Wabenkern: Experimentelle und numerische Analyse des Schädigungsverhaltens unter statischer und kurzzeitdynamischer Belastung (Doctoral dissertation, Dissertation, Kaiserslautern, Technische Universität Kaiserslautern, 2008).

  32. Liu PF, Zheng JY (2008) Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics. Mater Sci Eng A 485(1–2):711–717. https://doi.org/10.1016/j.msea.2008.02.023

    Article  Google Scholar 

  33. Padhi GS, Shenoi RA, Moy SSJ, Hawkins GL (1997) Progressive failure and ultimate collapse of laminated composite plates in bending. Compos Struct 40(3–4):277–291. https://doi.org/10.1016/S0263-8223(98)00030-0

    Article  Google Scholar 

  34. Gemkow K, Vignjevic R (2013) Strain-softening in continuum damage models: Investigation of MAT_058. In 9th European LS-DYNA Conference.

  35. Jenarthanan MP, Jeyapaul R (2013) Optimisation of machining parameters on milling of GFRP composites by desirability function analysis using Taguchi method. Int J Eng Sci Technol 5(4):22–36. https://doi.org/10.4314/ijest.v5i4.3

    Article  Google Scholar 

  36. Zhou X, Gao Y, Wang Y, Xiao P, Huang X (2022) Effects of ZrC particles, load and sliding speed on the wear behavior of the ZrC/2024Al composites. Wear 506:204465. https://doi.org/10.1016/j.wear.2022.204465

    Article  Google Scholar 

  37. Moharami A, Qodosi P (2022) Enhanced dry sliding friction and wear behaviors of Mg–Mg2Si composites. Compos Commun 36:101365. https://doi.org/10.1016/j.coco.2022.101365

    Article  Google Scholar 

  38. Jiang L, Wan Y, Zhang N, Fu J, Li X, Zhang X, Du P (2022) Erosive wear characteristics of styrene butadiene rubber and silicon dioxide-filled wood–plastic composites. J Build Eng 56:104791. https://doi.org/10.1016/j.jobe.2022.104791

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

TZ performed analyzed and interpreted data and results. MN analyzed and interpreted data and was a major contributor to writing the manuscript. AB analyzed and interpreted data and results. AB was a major contributor to writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tarik Zarrouk.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarrouk, T., Nouari, M., Benbouaza, A. et al. Influence of cutting tool geometry when milling Nomex honeycomb structure. Int J Adv Manuf Technol 130, 649–663 (2024). https://doi.org/10.1007/s00170-023-12729-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12729-8

Keywords

Navigation