Skip to main content
Log in

Progress and perspectives of joints defects of laser-arc hybrid welding: a review

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Laser-arc hybrid welding (LAHW), being a high-efficiency with excellent properties of high welding speed, deep penetration, and good bridging performance, has been paid close attention by domestic and overseas scholars. So far, the lack of suppression and detection of welding defects is still considered the critical technical obstacle that affects its welding quality, particularly for workpieces with industrial requirements. One vital method to conquer this challenging issue is the visual analysis technique with the combination of numerical simulation technique, which has been researched by abundant study outcomes. The primary target of detecting is to collect basic information and to understand the formation mechanism of welding defects. This review firstly describes welding defects online detection technology, such as high-speed image, electrical signal, acoustical signal, and optical signal detection technology. Then much emphasis has been placed on the internal mechanism of forming welding defects, including undercut, humping, porosity, and spatter defects. Particularly, the defect suppression methods are presented in order to restrain and address the welding defect problems. Finally, the current difficulties and potential remedies are discussed to supply an understanding on what still needs to be improved in the LAHW process. This comprehensive review is to offer guidance for those trying to reduce welding defects as they enhance the welding joints’ quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

References

  1. Casalino G, Campanelli SL, Ludovico AD (2013) Laser-arc hybrid welding of wrought to selective laser molten stainless steel. Int J Adv Manuf Technol 68:209–216. https://doi.org/10.1007/s00170-012-4721-z

    Article  Google Scholar 

  2. Turichin G, Kuznetsov M, Tsibulskiy I, Firsova A (2017) Hybrid laser-arc welding of the high-strength shipbuilding steels: equipment and technology. Phys Procedia 89:156–163. https://doi.org/10.1016/j.phpro.2017.08.005

    Article  Google Scholar 

  3. Petring D (2013) Developments in hybridisation and combined laser beam welding technologies. Handbook of laser welding technologies. Elsevier Inc., pp 478–504. https://doi.org/10.1533/9780857098771.3.478

    Book  Google Scholar 

  4. Chen M, Xu J, Xin L, Zhao Z, Wu F (2016) Comparative study on interactions between laser and arc plasma during laser-GTA welding and laser-GMA welding. Opt Lasers Eng 85:1–8. https://doi.org/10.1016/j.optlaseng.2016.04.006

    Article  Google Scholar 

  5. Zhou J, Tsai HL, Wang PC (2012) Hybrid laser-arc welding of aerospace and other materials. Welding Joining Aerosp Mater:109–141. https://doi.org/10.1533/9780857095169.1.109

  6. Wu D, Zhang P, Yu Z, Gao Y, Zhang H, Chen H et al (2022) Progress and perspectives of in-situ optical monitoring in laser beam welding: Sensing, characterization and modeling. J Manuf Process 75:767–791. https://doi.org/10.1016/j.jmapro.2022.01.044

    Article  Google Scholar 

  7. ISOE (2005) Welding - fusion-welded joints in steel, nickel, titanium and their alloys (beam welding excluded) - quality levels for imperfections

  8. Ai Y, Jiang P, Wang C, Mi G, Geng S, Liu W et al (2018) Investigation of the humping formation in the high power and high speed laser welding. Opt Lasers Eng 107:102–111. https://doi.org/10.1016/j.optlaseng.2018.03.010

    Article  Google Scholar 

  9. Niu P, Li R, Fan Z, Cao P, Zheng D, Wang M et al (2023) Inhibiting cracking and improving strength for additive manufactured AlxCoCrFeNi high entropy alloy via changing crystal structure from BCC-to-FCC. Addit Manuf 71. https://doi.org/10.1016/j.addma.2023.103584

  10. Shinohara Y, Madi Y, Besson J (2016) Anisotropic ductile failure of a high-strength line pipe steel. Int J Fract 197:127–145. https://doi.org/10.1007/s10704-015-0054-x

    Article  Google Scholar 

  11. Caccese V, Blomquist PA, Berube KA, Webber SR, Orozco NJ (2006) Effect of weld geometric profile on fatigue life of cruciform welds made by laser/GMAW processes. Mar Struct 19:1–22. https://doi.org/10.1016/j.marstruc.2006.07.002

    Article  Google Scholar 

  12. Steen WM (1980) Arc augmented laser processing of materials. J Appl Phys 51:5636–5641. https://doi.org/10.1063/1.327560

    Article  Google Scholar 

  13. Wang JY, Qi T, Zhong CL, Zhang H, Li XR, Liu FD (2021) Study on seam nitrogen behavior of high nitrogen steel hybrid welding. Optik (Stuttg) 242. https://doi.org/10.1016/j.ijleo.2021.167026

  14. Ascari A, Fortunato A, Orazi L, Campana G (2012) The influence of process parameters on porosity formation in hybrid LASER-GMA welding of AA6082 aluminum alloy. Opt Laser Technol 44:1485–1490. https://doi.org/10.1016/j.optlastec.2011.12.014

    Article  Google Scholar 

  15. Kurzynowski T, Gruber K, Stopyra W, Kuźnicka B, Chlebus E (2018) Correlation between process parameters, microstructure and properties of 316 L stainless steel processed by selective laser melting. Mater Sci Eng A 718:64–73. https://doi.org/10.1016/j.msea.2018.01.103

    Article  Google Scholar 

  16. Gao M, Tang HG, Chen XF, Zeng XY (2012) High power fiber laser arc hybrid welding of AZ31B magnesium alloy. Mater Des 42:46–54. https://doi.org/10.1016/j.matdes.2012.05.034

    Article  Google Scholar 

  17. Gao Y, Hao K, Xu L, Han Y, Zhao L, Ren W et al (2022) Microstructure homogeneity and mechanical properties of laser-arc hybrid welded AZ31B magnesium alloy. J Mag Alloys. https://doi.org/10.1016/j.jma.2022.09.034

  18. Yang S, Wang D, Yang L, Zhang F, Zhang C, Zhou B et al (2022) Effects of laser-arc hybrid welding on microstructure and mechanical properties of dissimilar steel joint. Optik (Stuttg) 268. https://doi.org/10.1016/j.ijleo.2022.169795

  19. Li Y, Jiang P, Li Y, Mi G, Geng S (2023) Microstructure evolution and mechanical properties in the depth direction of ultra-high power laser-arc hybrid weld joint of 316L stainless steel. Opt Laser Technol 160. https://doi.org/10.1016/j.optlastec.2022.109093

  20. Saternus Z, Piekarska W, Kubiak M, Domański T, Sowa L (2016) Numerical analysis of deformations in sheets made of X5CRNI18-10 steel welded by a hybrid laser-arc heat source. Procedia Eng 136:95–100. https://doi.org/10.1016/j.proeng.2016.01.180

    Article  Google Scholar 

  21. Li L, Xia H, Ma N, Pan B, Huang Y, Chang S (2018) Comparison of the welding deformation of mismatch and normal butt joints produced by laser-arc hybrid welding. J Manuf Process 34:678–687. https://doi.org/10.1016/j.jmapro.2018.07.015

    Article  Google Scholar 

  22. Gu X, Li H, Yang L, Gao Y (2013) Coupling mechanism of laser and arcs of laser-twin-arc hybrid welding and its effect on welding process. Opt Laser Technol 48:246–253. https://doi.org/10.1016/j.optlastec.2012.10.025

    Article  Google Scholar 

  23. Campana G, Ascari A, Fortunato A, Tani G (2009) Hybrid laser-MIG welding of aluminum alloys: The influence of shielding gases. Appl Surf Sci 255:5588–5590. https://doi.org/10.1016/j.apsusc.2008.07.169

    Article  Google Scholar 

  24. Swanson PT, Page CJ, Read E, Wu HZ (2007) Plasma augmented laser welding of 6 mm steel plate. Sci Technol Weld Join 12:153–160. https://doi.org/10.1179/174329307X164283

    Article  Google Scholar 

  25. Gumenyuk A, Rethmeier M (2003) Latest MIG, TIG Arc-YAG laser hybrid welding systems for various welding products. Proc SPIE - Int Soc Optic Eng 4831. https://doi.org/10.1117/12.497771

  26. Gumenyuk A, Rethmeier M (2013) Developments in hybrid laser-arc welding technology. Handbook of laser welding technologies. Elsevier Inc., pp 505–521. https://doi.org/10.1533/9780857098771.3.505

    Book  Google Scholar 

  27. Qin GL, Lei Z, Lin SY (2007) Effects of Nd:YAG laser + pulsed MAG arc hybrid welding parameters on its weld shape. Sci Technol Weld Join 12:79–86. https://doi.org/10.1179/174329306X147544

    Article  Google Scholar 

  28. Fellman A, Kujanpää V (2006) The effect of shielding gas composition on welding performance and weld properties in hybrid CO2 laser–gas metal arc welding of carbon manganese steel. J Laser Appl 18:12–20. https://doi.org/10.2351/1.2164481

    Article  Google Scholar 

  29. Heimbs S, Engström H, Nilsson K, Kaplan AFH (2003) Parameter influence in CO2-laser/MIG hybrid welding. In: Conference: 56th Annual Assembly of the International Institute of Welding

  30. Zhang S, Sun J, Zhu M, Zhang L, Nie P, Li Z (2019) Effects of shielding gases on process stability of 10CrNi3MoV steel in hybrid laser-arc welding. J Mater Process Technol 270:37–46. https://doi.org/10.1016/j.jmatprotec.2019.01.027

    Article  Google Scholar 

  31. Zhu Y, Cai Y, Dong H, Wang M (2022) Tailoring droplet transfer and molten pool flow during hybrid laser arc welding of nickel base alloy. Opt Laser Technol:147. https://doi.org/10.1016/j.optlastec.2021.107620

  32. Malinauskas M, Žukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V, Buividas R et al (2016) Ultrafast laser processing of materials: from science to industry. Light Sci Appl 5. https://doi.org/10.1038/lsa.2016.133

  33. Penilla EH, Devia-Cruz LF, Wieg AT, Martinez-Torres P, Cuando-Espitia N, Sellappan P et al (2019) Ultrafast laser welding of ceramics. Science 365(6455):803–808. https://doi.org/10.1126/science.aaw6699

    Article  Google Scholar 

  34. Tetsui T (2001) Effects of brazing filler on properties of brazed joints between tial and metallic materials. Intermetallics 9(3):253–260. https://doi.org/10.1016/S0966-9795(00)00129-1

    Article  Google Scholar 

  35. Sheng Z, Xu Y, Guo H, Zhou J, Chang L, Ding W et al (2022) Study on droplet transfer behavior during medium and low power laser assisted pulsed MAG hybrid welding. Optik (Stuttg) 270. https://doi.org/10.1016/j.ijleo.2022.169972

  36. Zhang W, Hua X, Liao W, Li F, Wang M (2014) Behavior of the plasma characteristic and droplet transfer in CO 2 laser-GMAW-P hybrid welding. Int J Adv Manuf Technol 72:935–942. https://doi.org/10.1007/s00170-014-5731-9

    Article  Google Scholar 

  37. Račko D (1987) Acoustic emission from welds as indicator of cracking. Mater Sci Technol (United Kingdom) 3:1062–1066. https://doi.org/10.1179/mst.1987.3.12.1062

    Article  Google Scholar 

  38. Grad L, Grum J, Polajnar I, Slabe JM (2004) Feasibility study of acoustic signals for on-line monitoring in short circuit gas metal arc welding. Int J Mach Tools Manuf 44:555–561. https://doi.org/10.1016/j.ijmachtools.2003.10.016

    Article  Google Scholar 

  39. Nguyen NT, Wahab MA (1996) The effect of undercut and residual stresses on fatigue behaviour of misaligned butt joints. Eng Fract Mech 55

  40. Bell R, Vosikovsky O, Bain SA (1989) The significance of weld toe undercuts in the fatigue of steel plate t-joints. Int J Fatig 11(1):3–11. https://doi.org/10.1016/0142-1123(89)90041-8

    Article  Google Scholar 

  41. Alam MM, Barsoum Z, Jonsén P, Kaplan AFH, Häggblad HÅ (2010) The influence of surface geometry and topography on the fatigue cracking behaviour of laser hybrid welded eccentric fillet joints. Appl Surf Sci 256:1936–1945. https://doi.org/10.1016/j.apsusc.2009.10.041

    Article  Google Scholar 

  42. Nguyen TN, Wahab MA (1998) The effect of weld geometry and residual stresses on the fatigue of welded joints under combined loading. J Mater Proc Technol 77

  43. Otegui JL, Kerr HW, Burns DJ, Mohaupt UH (1989) Fatigue crack initiation from defects at weld toes in steel. Int J Press Vessels Pip 38

  44. Adam N K (1957) Use of the term ‘young’ s equation’ for contact angles. Nature 180(4590). https://doi.org/10.1038/180809a0

  45. Fernando Mendez P, Eagar T (2000) Humping Formation in High Current GTA Welding. https://www.researchgate.net/publication/260024051

  46. Meng X, Qin G, Bai X, Zou Z (2016) Numerical analysis of undercut defect mechanism in high speed gas tungsten arc welding. J Mater Process Technol 236:225–234. https://doi.org/10.1016/j.jmatprotec.2016.05.020

    Article  Google Scholar 

  47. Hu Z, Hua L, Qin X, Ni M, Ji F, Wu M (2021) Molten pool behaviors and forming appearance of robotic GMAW on complex surface with various welding positions. J Manuf Process 64:1359–1376. https://doi.org/10.1016/j.jmapro.2021.02.061

    Article  Google Scholar 

  48. Gao Z, Hao K, Xu L, Han Y, Zhao L, Jing H (2023) Undercut inhibition mechanisms during high-speed MAG welding employing plate inclination. Opt Laser Technol 158. https://doi.org/10.1016/j.optlastec.2022.108912

  49. Inose K, Kanbayashi J, Abe D, Matsumoto N, Nakanishi Y (2013) Design and welding method for high-strength steel structure using laser-arc hybrid welding. Weld World 57:657–664. https://doi.org/10.1007/s40194-013-0064-0

    Article  Google Scholar 

  50. Mills KC, Keene BJ (1990) Factors affecting variable weld penetration. Int Mater Rev 35(1):185–216. https://doi.org/10.1179/095066090790323966

    Article  Google Scholar 

  51. Zong R, Chen J, Wu C (2019) A comparison of TIG-MIG hybrid welding with conventional MIG welding in the behaviors of arc, droplet and weld pool. J Mater Process Technol 270:345–355. https://doi.org/10.1016/j.jmatprotec.2019.03.003

    Article  Google Scholar 

  52. Mendez PF, Eagar TW (2003) Penetration and defect formation in high current arc welding, Argonne, IL (United States). https://doi.org/10.2172/835707

  53. Nguyen TC, Weckman DC, Johnson DA, Kerr HW (2006) High speed fusion weld bead defects. Sci Technol Weld Join 11:618–633. https://doi.org/10.1179/174329306X128464

    Article  Google Scholar 

  54. Soderstrom E, Mendez P (2006) Humping mechanisms present in high speed welding. Sci Technol Weld Join 11:572–579. https://doi.org/10.1179/174329306X120787

    Article  Google Scholar 

  55. Alam MM, Kaplan AFH (2012) Analysis of the rapid central melt pool flow in hybrid laser-arc welding. Phys Procedia 39:853–862. https://doi.org/10.1016/j.phpro.2012.10.110

    Article  Google Scholar 

  56. Karlsson J, Norman P, Kaplan AFH, Rubin P, Lamas J, Yañez A (2011) Observation of the mechanisms causing two kinds of undercut during laser hybrid arc welding. Appl Surf Sci 257:7501–7506. https://doi.org/10.1016/j.apsusc.2011.03.068

    Article  Google Scholar 

  57. Normana PM, Karlsson J, Kaplan AFH (2011) Mechanisms forming undercuts during laser hybrid arc welding. Phys Procedia 12:201–207. https://doi.org/10.1016/j.phpro.2011.03.026

    Article  Google Scholar 

  58. Frostevarg J, Kaplan AFH (2014) Undercut suppression in laser-arc hybrid welding by melt pool tailoring. J Laser Appl 26. https://doi.org/10.2351/1.4872062

  59. Eriksson I, Powell J, Kaplan AFH (2013) Melt behavior on the keyhole front during high speed laser welding. Opt Lasers Eng 51:735–740. https://doi.org/10.1016/j.optlaseng.2013.01.008

    Article  Google Scholar 

  60. Michael R, Sergej G, Marco L et al (2009) Laser-hybrid welding of thick plates up to 32 mm using a 20 kW fibre laser. Quart J Japan Weld Soc 27(2):74s–79s. https://doi.org/10.2207/qjjws.27.74s

  61. Li J, Sun Q, Liu Y, Zhen Z, Sun Q, Feng J (2020) Melt flow and microstructural characteristics in beam oscillation superimposed laser welding of 304 stainless steel. J Manuf Process 50:629–637. https://doi.org/10.1016/j.jmapro.2019.12.053

    Article  Google Scholar 

  62. Tao X, Ba X, Xu G, Liu L (2023) Effect of laser power on pulsed laser-induced MAG hybrid overhead welding of 4-mm-X70 pipeline steel. Opt Laser Technol:164. https://doi.org/10.1016/j.optlastec.2023.109460

  63. Ai Y, Liu X, Huang Y, Yu L (2020) Numerical analysis of the influence of molten pool instability on the weld formation during the high speed fiber laser welding. Int. J Heat Mass Transf 160. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120103

  64. Zhou J, Tsai HL (2008) Modeling of transport phenomena in hybrid laser-MIG keyhole welding. Int J Heat Mass Transf 51:4353–4366. https://doi.org/10.1016/j.ijheatmasstransfer.2008.02.011

    Article  Google Scholar 

  65. Liu G, Tang X, Han S, Lu F, Cui H (2020) Influence of interwire angle on undercutting formation and arc behavior in pulsed tandem narrow-gap GMAW. Mater Des 193. https://doi.org/10.1016/j.matdes.2020.108795

  66. Nguyen TC, Weckman DC, Johnson DA, Kerr HW (2005) The humping phenomenon during high speed gas metal arc welding. Sci Technol Weld Join 10:447–459. https://doi.org/10.1179/174329305X44134

    Article  Google Scholar 

  67. Nguyen TC, Weckman DC, Johnson DA (2007) The discontinuous weld bead defect in high-speed gas metal arc welds. Weld J (Miami, Fla) 86

  68. Eriksson I, Gren P, Powell J, Kaplan AF (2010) New high-speed photography technique for observation of fluid flow in laser welding. Opt Eng 49:1. https://doi.org/10.1117/1.3502567

    Article  Google Scholar 

  69. Frostevarg J, Norman P, Karlsson J, Kaplan AFH (2009) Monitoring undercut, blowouts and root sagging during laser beam welding. In: Conference Lasers in Manufacturing, vol 5. LIM, Munich, Germany. https://www.researchgate.net/publication/257052247

  70. Kaplan A, Eriksson I, Kaplan AFH, Norman P, Eriksson I (2009) Analysis of the keyhole and weld pool dynamics by imaging evaluation and photodiode monitoring. In: Proceedings of LAMP2009: The 5th International Congress on Laser Advanced Materials Processing; LPM2009, the 10th International Symposium on Laser Precision Microfabrication; HPL2009, the 5th International Symposium on High Power Laser Processing; Kobe, June 29 - July 2, 2009; [congress program & technical digest]. Sumitomo Corp., Tokyo

  71. Haug P, Rominger V, Speker N, Weber R, Graf T, Weigl M et al (2013) Influence of laser wavelength on melt bath dynamics and resulting seam quality at welding of thick plates. Phys Procedia 41:49–58. https://doi.org/10.1016/j.phpro.2013.03.051

    Article  Google Scholar 

  72. Powell J, Ilar T, Frostevarg J, Torkamany MJ, Na S-J, Petring D et al (2015) Weld root instabilities in fiber laser welding. J Laser Appl 27. https://doi.org/10.2351/1.4906390

  73. Bachmann M, Avilov V, Gumenyuk A, Rethmeier M (2014) Experimental and numerical investigation of an electromagnetic weld pool support system for high power laser beam welding of austenitic stainless steel. J Mater Process Technol 214:578–591. https://doi.org/10.1016/j.jmatprotec.2013.11.013

    Article  Google Scholar 

  74. Avilov VV, Gumenyuk A, Lammers M, Rethmeier M (2012) PA position full penetration high power laser beam welding of up to 30 mm thick AlMg3 plates using electromagnetic weld pool support. Sci Technol Weld Join 17:128–133. https://doi.org/10.1179/1362171811Y.0000000085

    Article  Google Scholar 

  75. Frostevarg J (2018) Factors affecting weld root morphology in laser keyhole welding. Opt Lasers Eng 101:89–98. https://doi.org/10.1016/j.optlaseng.2017.10.005

    Article  Google Scholar 

  76. Palmer TA, Debroy T (2015) Mitigation of root defect in laser and hybrid laser-arc welding. Welding Journal 94(3):73S–82S. https://www.researchgate.net/publication/279321301

  77. Ilar T, Eriksson I, Powell J, Kaplan A (2012) Root humping in laser welding-an investigation based on high speed imaging. Phys Procedia 39:27–32. https://doi.org/10.1016/j.phpro.2012.10.010

    Article  Google Scholar 

  78. Pan Q, Mizutani M, Kawahito Y, Katayama S (2016) High power disk laser-metal active gas arc hybrid welding of thick high tensile strength steel plates. J Laser Appl 28:012004. https://doi.org/10.2351/1.4934939

    Article  Google Scholar 

  79. Zhang M, Chen G, Zhou Y, Liao S (2014) Optimization of deep penetration laser welding of thick stainless steel with a 10kW fiber laser. Mater Des 53:568–576. https://doi.org/10.1016/j.matdes.2013.06.066

    Article  Google Scholar 

  80. Tang G, Zhao X, Li R, Liang Y, Jiang Y, Chen H (2020) The effect of arc position on laser-arc hybrid welding of 12-mm-thick high strength bainitic steel. Opt Laser Technol 121. https://doi.org/10.1016/j.optlastec.2019.105780

  81. Mazar Atabaki M, Ma J, Yang G, Kovacevic R (2014) Hybrid laser/arc welding of advanced high strength steel in different butt joint configurations. Mater Des 64:573–587. https://doi.org/10.1016/j.matdes.2014.08.011

    Article  Google Scholar 

  82. Pan Q, Mizutani M, Kawahito Y, Katayama S (2016) Effect of shielding gas on laser–MAG arc hybrid welding results of thick high-tensile-strength steel plates. Weld World 60:653–664. https://doi.org/10.1007/s40194-016-0333-9

    Article  Google Scholar 

  83. Zhang M, Zhang Y, Mao C, Hu Y, Chen G, Bi Z (2019) Experiments on formation mechanism of root humping in high-power laser autogenous welding of thick plates with stainless steels. Opt Laser Technol 111:11–19. https://doi.org/10.1016/j.optlastec.2018.09.029

    Article  Google Scholar 

  84. Cao X, Wanjara P, Huang J, Munro C, Nolting A (2011) Hybrid fiber laser - arc welding of thick section high strength low alloy steel. Mater Des 32:3399–3413. https://doi.org/10.1016/j.matdes.2011.02.002

    Article  Google Scholar 

  85. Shen X, Li L, Guo W, Teng W, He W (2016) Comparison of processing window and porosity distribution in laser welding of 10 mm thick 30CrMnSiA ultrahigh strength between flat (1G) and horizontal (2G) positions. J Laser Appl 28:022418. https://doi.org/10.2351/1.4943992

    Article  Google Scholar 

  86. Sun J, Feng K, Zhang K, Guo B, Jiang E, Nie P et al (2017) Fiber laser welding of thick AISI 304 plate in a horizontal (2G) butt joint configuration. Mater Des 118:53–65. https://doi.org/10.1016/j.matdes.2017.01.015

    Article  Google Scholar 

  87. Yamba P, Zhenying X, Yun W, Rong W, Xing Y (2019) Investigation of humping defect formation in a lap joint at a high-speed hybrid laser-GMA welding. Results Phys 13. https://doi.org/10.1016/j.rinp.2019.102341

  88. Wang J, Wang C, Meng X, Hu X, Yu Y, Yu S (2012) Study on the periodic oscillation of plasma/vapour induced during high power fibre laser penetration welding. Opt Laser Technol 44:67–70. https://doi.org/10.1016/j.optlastec.2011.05.020

    Article  Google Scholar 

  89. Kawaguchi I, Tsukamoto S, Arakane G, Honda H (2006) Characteristics of high-power CO 2 laser welding and porosity suppression mechanism with nitrogen shielding. Study of high-power laser welding phenomena. Weld Int 20:100–105. https://doi.org/10.1533/wint.2006.3541

    Article  Google Scholar 

  90. Katayama S, Kobayashi Y, Mizutani M, Matsunawa A (2001) Effect of vacuum on penetration and defects in laser welding. J Laser Appl 13(5):187–192. https://doi.org/10.2351/1.1404413

    Article  Google Scholar 

  91. Matsunawa A, Seto’ N, Kim’ J, Mizutania M, Katayamaa S (1998) Dynamics of keyhole and molten pool in laser welding. J Laser Appl 10(6):247–254. https://doi.org/10.2351/1.521858

    Article  Google Scholar 

  92. Daugherty WL, Cannell GR (2003) Analysis of porosity associated with Hanford 3013 Outer Container Welds. Pract Fail Anal 3

  93. Leo P, Renna G, Casalino G, Olabi AG (2015) Effect of power distribution on the weld quality during hybrid laser welding of an Al-Mg alloy. Opt Laser Technol 73:118–126. https://doi.org/10.1016/j.optlastec.2015.04.021

    Article  Google Scholar 

  94. Zhang Y, Song X, Chang L, Wu S (2017) Fatigue lifetime of laser-MIG hybrid welded joint of 7075-T6 aluminum alloy by in-situ observation. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Mater Eng 46:2411–2416. https://doi.org/10.1016/s1875-5372(17)30207-2

    Article  Google Scholar 

  95. Cho WI, Na SJ, Cho MH, Lee JS (2010) Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding. Comput Mater Sci 49:792–800. https://doi.org/10.1016/j.commatsci.2010.06.025

    Article  Google Scholar 

  96. Ola OT, Doern FE (2015) Keyhole-induced porosity in laser-arc hybrid welded aluminum. Int J Adv Manuf Technol 80:3–10. https://doi.org/10.1007/s00170-015-6987-4

    Article  Google Scholar 

  97. Katayama A (2006) Physical phenomena and porosity prevention mechanism in laser-arc hybrid welding. Tran-JWRI 10:18910/12224

    Google Scholar 

  98. Mazar Atabaki M, Ma J, Liu W, Kovacevic R (2015) Pore formation and its mitigation during hybrid laser/arc welding of advanced high strength steel. Mater Des 67:509–521. https://doi.org/10.1016/j.matdes.2014.10.072

    Article  Google Scholar 

  99. Katayama S, Kawahito Y, Mizutani M (2010) Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects. Phys Procedia 5:9–17. https://doi.org/10.1016/j.phpro.2010.08.024

    Article  Google Scholar 

  100. Tsukamoto S (2011) High speed imaging technique Part 2 - High speed imaging of power beam welding phenomena. Sci Technol Weld Join 16:44–55. https://doi.org/10.1179/136217110X12785889549949

    Article  Google Scholar 

  101. Yang S, Yang L, Wang D, Zhang F, Liu C, Huang G (2022) Effect of welding stability on process porosity in laser arc hybrid welding of dissimilar steel. Optik (Stuttg) 271. https://doi.org/10.1016/j.ijleo.2022.170165

  102. Mizutani M, Katayama S, Matsijnawa A (2003) Observation of molten metal behavior during laser irradiation: basic experiment to understand laser welding phenomena. Proc SPIE Int Soc Optic Eng 4831. https://doi.org/10.1117/12.497909

  103. Katayama S, Iviizutanf M, Matsunawa A (2002) Development of porosity prevention procedures during laser welding. In: First International Symposium on High-Power Laser Macroprocessing, May 27-31, 2002, Osaka, Japan. Joining and Welding Research Institute (JWRI), Osaka University, Osaka, Japan. http://spiedl.org/terms

  104. Xu J, Rong Y, Huang Y, Wang P, Wang C (2018) Keyhole-induced porosity formation during laser welding. J Mater Process Technol 252:720–727. https://doi.org/10.1016/j.jmatprotec.2017.10.038

    Article  Google Scholar 

  105. Sun J, Nie P, Feng K, Li Z, Guo B, Jiang E (2017) The elimination of pores in laser welds of AISI 304 plate using different shielding gases. J Mater Process Technol 248:56–63. https://doi.org/10.1016/j.jmatprotec.2017.05.011

    Article  Google Scholar 

  106. Madison JD, Aagesen LK (2012) Quantitative characterization of porosity in laser welds of stainless steel. Scr Mater 67:783–786. https://doi.org/10.1016/j.scriptamat.2012.06.015

    Article  Google Scholar 

  107. Yu Y, Wang C, Hu X, Wang J, Yu S (2010) Porosity in fiber laser formation of 5A06 aluminum alloy. J Mech Sci Technol 24:1077–1082. https://doi.org/10.1007/s12206-010-0309-4

    Article  Google Scholar 

  108. Zhan X, Yan T, Gao Q, Zhu Z, Bu H, Wang Z (2019) The porosity formation mechanism in the laser welded joint of TA15 titanium alloy. Mater Res Express 6. https://doi.org/10.1088/2053-1591/ab1612

  109. Bunaziv I, Wenner S, Ren X, Frostevarg J, Kaplan AFH, Akselsen OM (2020) Filler metal distribution and processing stability in laser-arc hybrid welding of thick HSLA steel. J Manuf Process 54:228–239. https://doi.org/10.1016/j.jmapro.2020.02.048

    Article  Google Scholar 

  110. Xu G, Li L, Wang H, Li P, Guo Q, Hu Q et al (2019) Simulation and experimental studies of keyhole induced porosity in laser-MIG hybrid fillet welding of aluminum alloy in the horizontal position. Opt Laser Technol 119. https://doi.org/10.1016/j.optlastec.2019.105667

  111. Ola OT, Doern FE (2017) Factors controlling keyhole-induced porosity in cold wire laser welded aluminum. J Laser Appl 29:012008. https://doi.org/10.2351/1.4967510

    Article  Google Scholar 

  112. Zou J, Zhao Z, Kong H, Wang Z, Jiang F (2023) Keyhole mouth instability and pore formation in fiber laser-arc hybrid manufacturing. Opt Laser Technol 164. https://doi.org/10.1016/j.optlastec.2023.109561

  113. Cui B, Liu S, Zhang F, Luo T, Feng M (2022) Effect of welding heat input on pores in laser-arc hybrid welding of high nitrogen steel. Int J Adv Manuf Technol 119:421–434. https://doi.org/10.1007/s00170-021-08113-z

    Article  Google Scholar 

  114. Zhao Y, Zhan X, Zhou X, Liu T, Kang Y (2021) Effect of heat input on macro morphology and porosity of laser-MIG hybrid welded joint for 5A06 aluminum alloy. Int J Adv Manuf Technol 115:4035–4045. https://doi.org/10.1007/s00170-021-07378-8

    Article  Google Scholar 

  115. Huang L, Wu D, Hua X, Liu S, Jiang Z, Li F et al (2018) Effect of the welding direction on the microstructural characterization in fiber laser-GMAW hybrid welding of 5083 aluminum alloy. J Manuf Process 31:514–522. https://doi.org/10.1016/j.jmapro.2017.12.010

    Article  Google Scholar 

  116. Casalino G, Campanelli SL, Maso UD, Ludovico AD (2013) Arc leading versus laser leading in the hybrid welding of aluminium alloy using a fiber laser. Procedia CIRP 12:151–156. https://doi.org/10.1016/j.procir.2013.09.027

    Article  Google Scholar 

  117. Chen M, Li X, Liu L (2012) Effect of electric field on interaction between laser and arc plasma in laser-arc hybrid welding. IEEE Trans Plasma Sci 40:2045–2050. https://doi.org/10.1109/TPS.2012.2199768

    Article  Google Scholar 

  118. Bunaziv I, Akselsen OM, Salminen A, Unt A (2016) Fiber laser-MIG hybrid welding of 5 mm 5083 aluminum alloy. J Mater Process Technol 233:107–114. https://doi.org/10.1016/j.jmatprotec.2016.02.018

    Article  Google Scholar 

  119. Xiao M, Gao C, Tan C, Zhao Y, Liu H, Yang J (2021) Experimental and numerical assessment of interfacial microstructure evolution in dissimilar Al/steel joint by diode laser welding-brazing. Optik (Stuttg) 245. https://doi.org/10.1016/j.ijleo.2021.167706

  120. Ahn J, He E, Chen L, Dear J, Davies C (2017) The effect of Ar and He shielding gas on fibre laser weld shape and microstructure in AA 2024-T3. J Manuf Process 29:62–73. https://doi.org/10.1016/j.jmapro.2017.07.011

    Article  Google Scholar 

  121. Cai C, He S, Chen H, Zhang W (2019) The influences of Ar-He shielding gas mixture on welding characteristics of fiber laser-MIG hybrid welding of aluminum alloy. Opt Laser Technol 113:37–45. https://doi.org/10.1016/j.optlastec.2018.12.011

    Article  Google Scholar 

  122. Zhang Y, Chen G, Mao S, Zhou C, Chen F (2017) Optimization of hybrid laser arc welding of 42CrMo steel to suppress pore formation. Appl Phys A Mater Sci Process 123. https://doi.org/10.1007/s00339-017-1004-4

  123. Schultz V, Seefeld T, Vollertsen F (2018) Gap bridging ability in laser beam welding of thin aluminum sheets. Laser Institute of America, pp 1165–1173. https://doi.org/10.2351/1.5063044

    Book  Google Scholar 

  124. Fetzer F, Sommer M, Weber R, Weberpals JP, Graf T (2018) Reduction of pores by means of laser beam oscillation during remote welding of AlMgSi. Opt Lasers Eng 108:68–77. https://doi.org/10.1016/j.optlaseng.2018.04.012

    Article  Google Scholar 

  125. Wang L, Gao M, Zhang C, Zeng X (2016) Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy. Mater Des 108:707–717. https://doi.org/10.1016/j.matdes.2016.07.053

    Article  Google Scholar 

  126. Wang Z, Oliveira JP, Zeng Z, Bu X, Peng B, Shao X (2019) Laser beam oscillating welding of 5A06 aluminum alloys: microstructure, porosity and mechanical properties. Opt Laser Technol 111:58–65. https://doi.org/10.1016/j.optlastec.2018.09.036

    Article  Google Scholar 

  127. Hao K, Gao Y, Xu L, Han Y, Zhao L, Ren W et al (2022) Beam oscillating parameters on pore inhibition, recrystallization and grain boundary characteristics of laser-arc hybrid welded AZ31 magnesium alloy. J Magnes Alloys. https://doi.org/10.1016/j.jma.2022.10.010

  128. Miyagi M, Zhang X, Kawahito Y, Katayama S (2017) Surface void suppression for pure copper by high-speed laser scanner welding. J Mater Process Technol 240:52–59. https://doi.org/10.1016/j.jmatprotec.2016.09.008

    Article  Google Scholar 

  129. Gao Z, Shao X, Jiang P, Wang C, Zhou Q, Cao L et al (2016) Multi-objective optimization of weld geometry in hybrid fiber laser-arc butt welding using Kriging model and NSGA-II. Appl Phys A Mater Sci Process 122. https://doi.org/10.1007/s00339-016-0144-2

  130. Tucker JD, Nolan TK, Martin AJ, Young GA (2012) Effect of travel speed and beam focus on porosity in alloy 690 laser welds. JOM 64:1409–1417. https://doi.org/10.1007/s11837-012-0481-3

    Article  Google Scholar 

  131. Gunenthiram V, Peyre P, Schneider M, Dal M, Coste F, Koutiri I et al (2018) Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process. J Mater Process Technol 251:376–386. https://doi.org/10.1016/j.jmatprotec.2017.08.012

    Article  Google Scholar 

  132. Li S, Deng Z, Deng H, Xu W (2017) Microstructure and properties of weld joint during 10 kW laser welding with surface-active element sulfur. Appl Surf Sci 426:704–713. https://doi.org/10.1016/j.apsusc.2017.07.262

    Article  Google Scholar 

  133. Lamas J, Karlsson J, Norman P, Powell J, Kaplan AFH, Yañez A (2013) The effect of fit-up geometry on melt flow and weld quality in laser hybrid welding. J Laser Appl 25:032010. https://doi.org/10.2351/1.4799556

    Article  Google Scholar 

  134. Gao X, Sun Y, Katayama S (2014) Neural network of plume and spatter for monitoring high-power disk laser welding. Int J Precis Eng Manuf - Green Technol 1:293–298. https://doi.org/10.1007/s40684-014-0035-y

    Article  Google Scholar 

  135. Nakamura H, Kawahito Y, Nishimoto K, Katayama S (2015) Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium. J Laser Appl 27. https://doi.org/10.2351/1.4922383

  136. Wu D, Hua X, Ye Y, Huang L, Li F, Huang Y (2018) Experimental and numerical study of spatter formation and composition change in fiber laser welding of aluminum alloy. J Phys D Appl Phys 51. https://doi.org/10.1088/1361-6463/aab758

  137. Fabbro R, Slimani S, Doudet I, Coste F, Briand F (2006) Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd-Yag CW laser welding. J Phys D Appl Phys 39:394–400. https://doi.org/10.1088/0022-3727/39/2/023

    Article  Google Scholar 

  138. Fabbro R (2010) Melt pool and keyhole behaviour analysis for deep penetration laser welding. J Phys D Appl Phys 43. https://doi.org/10.1088/0022-3727/43/44/445501

  139. Wahba M, Mizutani M, Katayama S (2015) Hybrid welding with fiber laser and CO2 gas shielded arc. J Mater Process Technol 221:146–153. https://doi.org/10.1016/j.jmatprotec.2015.02.004

    Article  Google Scholar 

  140. Li S, Chen G, Katayama S, Zhang Y (2014) Relationship between spatter formation and dynamic molten pool during high-power deep-penetration laser welding. Appl Surf Sci 303:481–488. https://doi.org/10.1016/j.apsusc.2014.03.030

    Article  Google Scholar 

  141. Kawahito Y, Mizutani M, Katayama S (2009) High quality welding of stainless steel with 10 kW high power fibre laser. Sci Technol Weld Join 14:288–294. https://doi.org/10.1179/136217108X372531

    Article  Google Scholar 

  142. Katayama S, Kawahito Y (2009) Elucidation of phenomena in high-power fiber laser welding and development of prevention procedures of welding defects. Fiber Lasers VI: Technol Syst Appl 7195:71951R. https://doi.org/10.1117/12.807211

    Article  Google Scholar 

  143. Zhang C, Li G, Gao M, Yan J, Zeng XY (2013) Microstructure and process characterization of laser-cold metal transfer hybrid welding of AA6061 aluminum alloy. Int J Adv Manuf Technol 68:1253–1260. https://doi.org/10.1007/s00170-013-4916-y

    Article  Google Scholar 

  144. Zhang G, Zhu B, Zou J, Wu Q, Xiao R (2020) Correlation between the spatters and evaporation vapor on the front keyhole wall during fiber laser keyhole welding. J Mater Res Technol 9:15143–15152. https://doi.org/10.1016/j.jmrt.2020.10.103

    Article  Google Scholar 

  145. Liu Q, Wu D, Wang Q, Zhang P, Yan H, Sun T et al (2023) Research status of stability in dynamic process of laser-arc hybrid welding based on droplet transfer behavior: a review. Coatings 13. https://doi.org/10.3390/coatings13010205

  146. Kah P, Salminen A, Martikainen J (2011) The analysis of shielding gases in laser-arc hybrid welding processes. Proc Inst Mech Eng B J Eng Manuf 225:1073–1082. https://doi.org/10.1177/2041297510393809

    Article  Google Scholar 

  147. Campana G, Fortunato A, Ascari A, Tani G, Tomesani L (2007) The influence of arc transfer mode in hybrid laser-mig welding. J Mater Process Technol 191:111–113. https://doi.org/10.1016/j.jmatprotec.2007.03.001

    Article  Google Scholar 

  148. Ming G, Xiaoyan Z, Qianwu H (2007) Effects of gas shielding parameters on weld penetration of CO2 laser-TIG hybrid welding. J Mater Process Technol 184:177–183. https://doi.org/10.1016/j.jmatprotec.2006.11.019

    Article  Google Scholar 

  149. Cai C, Li L, Tai L (2017) Narrow-gap laser-MIG hybrid welding of thick-section steel with different shielding gas nozzles. Int J Adv Manuf Technol 92:909–916. https://doi.org/10.1007/s00170-017-0179-3

    Article  Google Scholar 

  150. Zhu Y, Cai Y, Wang M (2022) Effects of He content in shielding gases on high-efficient hybrid laser arc welding with C-276 filler metal. J Mater Process Technol 299. https://doi.org/10.1016/j.jmatprotec.2021.117367

  151. Kik T, Górka J (2019) Numerical simulations of laser and hybrid S700MC T-joint welding. Materials 12. https://doi.org/10.3390/ma12030516

  152. Long H, Gery D, Carlier A, Maropoulos PG (2009) Prediction of welding distortion in butt joint of thin plates. Mater Des 30:4126–4135. https://doi.org/10.1016/j.matdes.2009.05.004

    Article  Google Scholar 

  153. Deng D, Murakawa H (2008) Finite element analysis of temperature field, microstructure and residual stress in multi-pass butt-welded 2.25Cr-1Mo steel pipes. Comput Mater Sci 43:681–695. https://doi.org/10.1016/j.commatsci.2008.01.025

    Article  Google Scholar 

  154. Singh B, Singhal P, Saxena KK (2019) ScienceDirect investigation of thermal efficiency and depth of penetration during GTAW process. Mater Today Proc 18(2019):2962–2969. https://doi.org/10.1016/j.matpr.2019.07.166

    Article  Google Scholar 

  155. Wang L, Chen J, Wu CS, Luan SC (2020) Numerical analysis of arc and droplet behaviors in gas metal arc welding with external compound magnetic field. J Mater Process Technol 282. https://doi.org/10.1016/j.jmatprotec.2020.116638

  156. Du Z, Sun X, Ng FL, Chew Y, Tan C, Bi G (2021) Thermo-metallurgical simulation and performance evaluation of hybrid laser arc welding of chromium-molybdenum steel. Mater Des 210. https://doi.org/10.1016/j.matdes.2021.110029

  157. Wu CS, Zhang HT, Chen J (2017) Numerical simulation of keyhole behaviors and fluid dynamics in laser–gas metal arc hybrid welding of ferrite stainless steel plates. J Manuf Process 25:235–245. https://doi.org/10.1016/j.jmapro.2016.11.009

    Article  Google Scholar 

  158. Kong F, Ma J, Kovacevic R (2011) Numerical and experimental study of thermally induced residual stress in the hybrid laser-GMA welding process. J Mater Process Technol 211:1102–1111. https://doi.org/10.1016/j.jmatprotec.2011.01.012

    Article  Google Scholar 

  159. Gao Z (2012) Numerical modeling to understand liquation cracking propensity during laser and laser hybrid welding (I). Int J Adv Manuf Technol 63:291–303. https://doi.org/10.1007/s00170-012-3907-8

    Article  Google Scholar 

  160. Xu G, Wu C, Ma X, Wang X (2013) Numerical analysis of welding residual stress and distortion in laser+GMAW hybrid welding of aluminum alloy T-joint. Acta Metall Sin (English Letters) 26:352–360. https://doi.org/10.1007/s40195-012-0166-5

    Article  Google Scholar 

  161. Kim YC, Hirohata M, Murakami M, Inose K (2015) Effects of heat input ratio of laser–arc hybrid welding on welding distortion and residual stress. Weld Int 29:245–253. https://doi.org/10.1080/09507116.2014.921039

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (52075317), the China Postdoctoral Science Foundation (2022T150400), the Class III Peak Discipline of Shanghai—Materials Science and Engineering (high-energy beam intelligent processing and green manufacturing), and the Natural Science Foundation of Shanxi Province (No.202203021211151).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Q.L.; methodology: Q.L.; investigation: Q.L., D.W., P.Z., Q.W., and H.Y.; formal analysis: Q.L.; writing—original draft: Q.L.; data curation: D.W.; supervision: D.W.; writing—review and editing: D.W., R.L., and P.Z.; visualization: P.Z. and T.S.; validation: P.Z.; and funding acquisition: P.Z. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Di Wu or Peilei Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Wu, D., Wang, Q. et al. Progress and perspectives of joints defects of laser-arc hybrid welding: a review. Int J Adv Manuf Technol 130, 111–146 (2024). https://doi.org/10.1007/s00170-023-12724-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12724-z

Keywords

Navigation