Skip to main content
Log in

Trajectory planning of cooperative robotic system for automated fiber placement in a leader-follower formation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This work investigates a leader-follower trajectory planning strategy in a 13-DOF (degree of freedom) cooperative robotic system for automated fiber placement (AFP). A 6-DOF serial robot with an AFP head is employed as the leader, while a 6-RSS (revolute-spherical-spherical) parallel robot holding a Y-shape mandrel through a 1-DOF rotary stage serves as the follower. Due to the fact that the dynamic and kinematic constraints of the serial robot may interrupt the fiber layup process, a time-jerk optimal trajectory planning scheme for the serial robot is designed. Considering a desired 0° fiber path, an optimal trajectory can be generated for the AFP head subject to the robot dynamic and kinematic constraints. However, the AFP head path could be deviated from the pre-planned fiber path, and the AFP head roller direction may not meet the requirement of keeping perpendicular to the mandrel surface. To compensate the serial robot motion and satisfy the AFP geometric constraints, a vision-based trajectory generation approach is developed for the parallel robot using a photogrammetry sensor C-Track 780. Based on the visual measurement results, the desired parallel robot trajectory can be determined according to the desired trajectory of the start point on the given fiber path. Experiments have been done to validate the effectiveness and superiority of the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lukaszewicz DH-JA, Ward C, Potter KD (2012) The engineering aspects of automated prepreg layup: history, present and future. Compos Part B: Eng 43(3):997–1009. https://doi.org/10.1016/j.compositesb.2011.12.003

    Article  Google Scholar 

  2. Shirinzadeh B, Alici G, Foong CW, Cassidy G (2004) Fabrication process of open surfaces by robotic fibre placement. Robot Cim-Int Manuf 20(1):17–28. https://doi.org/10.1016/S0736-5845(03)00050-4

    Article  Google Scholar 

  3. Cheng L, Zhang L, Zheng C, Li J (2023) Research on the method of improving the laying accuracy of automated fiber placement. Int J Adv Manuf Technol 125:4883–4897. https://doi.org/10.1007/s00170-023-10932-1

    Article  Google Scholar 

  4. Brasington A, Sacco C, Halbritter J, Wehbe R, Harik R (2021) Automated fiber placement: a review of history, current technologies, and future paths forward. Compos Part C: Open 6:100182. https://doi.org/10.1016/j.jcomc.2021.100182

    Article  Google Scholar 

  5. Li P, Zhang X, Xie W, Hoa SV (2019) Operation of the collaborative composite manufacturing (CCM) system. J Vis Exp 152. https://doi.org/10.3791/59969

  6. Hu J, Feng G (2010) Distributed tracking control of leader-follower multi-agent systems under noisy measurement. Automatica 46(8):1382–1387. https://doi.org/10.1016/j.automatica.2010.05.020

    Article  MathSciNet  Google Scholar 

  7. Meng Z, Dimarogonas DV, Johansson KH (2014) Leader-follower coordinated tracking of multiple heterogeneous Lagrange systems using continuous control. IEEE Trans Robot 30(3):739–745. https://doi.org/10.1109/TRO.2013.2294060

    Article  Google Scholar 

  8. Javier AM, Baker S, Rus D (2017) Multi-robot formation control and object transport in dynamic environments via constrained optimization. Int J Robot Res 36(9):1000–1021. https://doi.org/10.1177/0278364917719333

    Article  Google Scholar 

  9. Zhai A, Wang J, Zhang H, Lu G, Li H (2022) Adaptive robust synchronized control for cooperative robotic manipulators with uncertain base coordinate system. ISA T 126:134–143. https://doi.org/10.1016/j.isatra.2021.07.036

    Article  Google Scholar 

  10. Dou H, Wang S (2013) Robust adaptive motion/force control for motion synchronization of multiple uncertain two-link manipulators. Mech Mach Theory 67:77–93. https://doi.org/10.1016/j.mechmachtheory.2013.03.008

    Article  Google Scholar 

  11. Jin X (2023) Formation-based decentralized iterative learning cooperative impedance control for a team of robot manipulators. IEEE Trans Syst Man Cybern Syst 53(2):872–881. https://doi.org/10.1109/TSMC.2022.3189661

    Article  Google Scholar 

  12. Zhang R, Wang Y, Tan H, Xie W, Jiang Y, Xie H, Liu L (2022) Cross-coupling based finite-time synchronization control of the automated fiber placement system. In: Proceedings of the 37th Youth academic annual conference of Chinese Association of Automation (YAC), pp. 1214-1219. https://doi.org/10.1109/YAC57282.2022.10023786

  13. Rao AV (2009) A survey of numerical methods for optimal control. Adv Astronaut Sci 135(1):497–528

    Google Scholar 

  14. Abu-Dakka FJ, Assad IF, Alkhdour RM, Abderahim M (2017) Statistical evaluation of an evolutionary algorithm for minimum time trajectory planning problem for industrial robots. Int J Adv Manuf Technol 89:389–406. https://doi.org/10.1007/s00170-016-9050-1

    Article  Google Scholar 

  15. Xidias EK (2018) Time-optimal trajectory planning for hyper-redundant manipulators in 3D workspaces. Robot Cim-Int Manuf 50:286–298. https://doi.org/10.1016/j.rcim.2017.10.005

    Article  Google Scholar 

  16. Huang J, Hu P, Wu K, Zeng M (2018) Optimal time-jerk trajectory planning for industrial robots. Mech Mach Theory 121:530–544. https://doi.org/10.1016/j.mechmachtheory.2017.11.006

    Article  Google Scholar 

  17. Nadir B, Mohammed O, Minh-Tuan N, Abderrezak S (2022) Optimal trajectory generation method to find a smooth robot joint trajectory based on multiquadric radial basis functions. Int J Adv Manuf Technol 120:297–312. https://doi.org/10.1007/s00170-022-08696-1

    Article  Google Scholar 

  18. Zhao Y, Lin H-C, Tomizuka M (2018) Efficient trajectory optimization for robot motion planning. In: Proceedings of the 15th International conference on control, automation, robotics and vision (ICARCV), pp. 260-265. https://doi.org/10.1109/ICARCV.2018.8581059

  19. Liu H, Lai X, Wu W (2013) Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints. Robot Cim-Int Manuf 29(2):309–317. https://doi.org/10.1016/j.rcim.2012.08.002

    Article  Google Scholar 

  20. Betts JT (1998) Survey of numerical methods for trajectory optimization. J Guid Control Dynam 21(2):193–207. https://doi.org/10.2514/2.4231

    Article  MathSciNet  Google Scholar 

  21. Pardo D, Möller L, Neunert M, Winkler AW, Buchli J (2016) Evaluating direct transcription and nonlinear optimization methods for robot motion planning. IEEE Robot Autom Let 1(2):946–953. https://doi.org/10.1109/LRA.2016.2527062

    Article  Google Scholar 

  22. Kelly MP (2017) Transcription methods for trajectory optimization: a beginners tutorial. arXiv preprint arXiv:1707.00284. https://doi.org/10.48550/arXiv.1707.00284

  23. Kelly M (2017) An introduction to trajectory optimization: how to do your own direct collocation. SIAM Rev 59(4):849–904. https://doi.org/10.1137/16M1062569

    Article  MathSciNet  Google Scholar 

  24. Sun D, Mills JK (2002) Adaptive synchronized control for coordination of multirobot assembly tasks. IEEE Trans Robot Autom 18(4):498–510. https://doi.org/10.1109/TRA.2002.802229

    Article  Google Scholar 

  25. Zhu N, Xie W-F, Shen H (2023) A leader-follower trajectory planning approach for cooperative robotic system in automated fiber placement. In: Proceedings of IEEE International conference on mechatronics and automation (ICMA), pp 1829-1834. https://doi.org/10.1109/ICMA57826.2023.10215560

  26. Zhang K, Yan M, Huang T, Zheng J, Li Z (2019) 3D reconstruction of complex spatial weld seam for autonomous welding by laser structured light scanning. J Manuf Process 39:200–207. https://doi.org/10.1016/j.jmapro.2019.02.010

    Article  Google Scholar 

  27. Rout A, Deepak BBVL, Biswal BB, Mahanta GB (2022) Weld seam detection, finding, and setting of process parameters for varying weld gap by the utilization of laser and vision sensor in robotic arc welding. IEEE Trans Ind Electron 69(1):622–632. https://doi.org/10.1109/TIE.2021.3050368

    Article  Google Scholar 

  28. Li B, Li Y, Tian W, Liao W (2023) Pose accuracy improvement in robotic machining by visually-guided method and experimental investigation. Robot Auton Syst 164:104416. https://doi.org/10.1016/j.robot.2023.104416

    Article  Google Scholar 

  29. Bilal DK, Unel M, Tunc LT, Gonul B (2022) Development of a vision based pose estimation system for robotic machining and improving its accuracy using LSTM neural networks and sparse regression. Robot Cim-Int Manuf 74:102262. https://doi.org/10.1016/j.rcim.2021.102262

    Article  Google Scholar 

  30. Zhang X, Xie W, Hoa SV (2018) Semi-offline trajectory synchronized algorithm of the cooperative automated fiber placement system. Robot Cim-Int Manuf 51:53–62. https://doi.org/10.1016/j.rcim.2017.11.015

    Article  Google Scholar 

  31. Wen Y, Pagilla P (2023) Path-constrained and collision-free optimal trajectory planning for robot manipulators. IEEE Trans Autom Sci Eng 20(2):763–774. https://doi.org/10.1109/TASE.2022.3169989

    Article  Google Scholar 

  32. Zhang X, Xie W, Hoa SV (2014) Modeling and workspace analysis of collaborative advanced fiber placement machine. In: Proceedings of the ASME 2014 International mechanical engineering congress and exposition, pp 1–10. https://doi.org/10.1115/IMECE2014-38553

  33. Zeng R, Dai S, Xie WF, Zhang X (2015) Determination of the proper motion range of the rotary actuators of 6-RSS parallel robot. In: Proceedings of 2015 CCToMM symposium on mechanisms, machines, and mechatronics, pp 1–12

  34. Hély C, Birglen L, Xie W-F (2017) Feasibility study of robotic fibre placement on intersecting multi-axial revolution surfaces. Robot Cim-Int Manuf 48:73–79. https://doi.org/10.1016/j.rcim.2017.02.005

    Article  Google Scholar 

  35. Driscoll TA, Hale N, Trefethen LN (2014) Chebfun Guide. Pafnuty Publications, Oxford, U.K.

    Google Scholar 

  36. Berrut J-P, Trefethen LN (2004) Barycentric Lagrange interpolation. SIAM Rev 46(3):501–517. https://doi.org/10.1137/S0036144502417715

    Article  MathSciNet  Google Scholar 

  37. Waldvogel J (2006) Fast construction of the Féjer and Clenshaw-Curtis quadrature rules. BIT Numer Math 46(1):195–202. https://doi.org/10.1007/s10543-006-0045-4

    Article  MathSciNet  Google Scholar 

  38. Nemirovski AS, Todd MJ (2008) Interior-point methods for optimization. Acta Numer 17:191–234. https://doi.org/10.1017/S0962492906370018

    Article  MathSciNet  Google Scholar 

  39. Baydin AG, Pearlmutter BA, Radul AA, Siskind JM (2018) Automatic differentiation in machine learning: a survey. J Mach Learn Res 18:1–43

    MathSciNet  Google Scholar 

  40. Andersson JAE, Gillis J, Horn G, Rawlings JB, Diehl M (2019) CasADi: a software framework for nonlinear optimization and optimal control. Math Program Comput 11:1–36. https://doi.org/10.1007/s12532-018-0139-4

    Article  MathSciNet  Google Scholar 

  41. Yuan J-C (1989) A general photogrammetric method for determining object position and orientation. IEEE Trans Robot Autom 5(2):129–142. https://doi.org/10.1109/70.88034

    Article  Google Scholar 

Download references

Funding

This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) under Grant N00892.

Author information

Authors and Affiliations

Authors

Contributions

Ningyu Zhu: methodology, investigation, experimental validation, and manuscript writing. Wen-Fang Xie: supervision, project administration, and manuscript review. Henghua Shen: experimental validation and manuscript review.

Corresponding author

Correspondence to Wen-Fang Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, N., Xie, WF. & Shen, H. Trajectory planning of cooperative robotic system for automated fiber placement in a leader-follower formation. Int J Adv Manuf Technol 130, 575–588 (2024). https://doi.org/10.1007/s00170-023-12694-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12694-2

Keywords

Navigation