Skip to main content
Log in

Microfabrication of Sm2Co17 micromagnets for MEMS and micromotors using ultrashort pulsed hydro laser micromilling process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Micromagnets have wide applications in MEMS and micromotors but there are still miniaturization limitations in current microfabrication processes for permanent magnets. A novel damage-free ultrashort pulsed laser machining process to manufacture complex shapes of Sm2Co17 micromagnets is proposed in this work. Laser process permits to further miniaturize the size of the resulting micromagnets achieving very small micromagnets. This can be achieved as micromagnets are submerged in a refrigerant fluid which is especially beneficial for magnets that are materials very sensitive to high temperature. The heat effect of laser cutting on the hard magnetic materials is drastically reduced thanks to the fluid. The detailed description of the manufacturing process is hereby presented. Results of several machining processes like milling and cutting and the magnetic characterization of the resulting micromagnets are shown. Complex segment shapes, with 65-μm thickness made in high-quality Sm2Co17 material, with good accuracy are achieved. It is demonstrated that no permanent degradation of the magnetic properties appears after laser machining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rallabandi V, Taran N, Ionel DM, Boldea IG (2017) Axial-flux PM synchronous machines with air-gap profiling and very high ratio of spoke rotor poles to stator concentrated coils. 2017 IEEE Int Electr Mach Drives Conf IEMDC. IEEE; 2017;1–7

  2. Diez-Jimenez E, Rizzo R, Gómez-García MJ, Corral-Abad E (2019) Review of passive electromagnetic devices for vibration damping and isolation. Shock Vib

  3. Diez-Jimenez E, Alén-Cordero C, Alcover-Sánchez R, Corral-Abad E (2021) Modelling and test of an integrated magnetic spring-eddy current damper for space applications. Actuators 10:1–18

    Article  Google Scholar 

  4. Diez-Jimenez E, Musolino A, Raugi M, Rizzo R, Sani L (2019) A magneto-rheological brake excited by permanent magnets. Appl Comput Electromagn Soc J 34:186–191

    Google Scholar 

  5. Diez-Jimenez E, Sanchez-Montero R, Martinez-Muñoz M (2017) Towards miniaturization of magnetic gears: torque performance assessment. Micromachines 9:16. [cited 2018 May 29]. Available from: http://www.mdpi.com/2072-666X/9/1/16

  6. Zhao B, Bai Z, Lv H, Yan Z, Du Y, Guo X et al (2023) Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett 15:1–14. Springer Science and Business Media B.V [cited 2023 May 4]. Available from: https://link.springer.com/article/10.1007/s40820-023-01043-3

  7. Vidal J V., Slabov V, Kholkin AL, dos Santos MPS (2021) Hybrid triboelectric-electromagnetic nanogenerators for mechanical energy harvesting: a review. Nano-Micro Lett 13:1–58. Springer [cited 2023 May 4]. Available from: https://link.springer.com/article/10.1007/s40820-021-00713-4

  8. Zhou Q, Ji B, Hu F, Luo J, Zhou B (2021) Magnetized micropillar-enabled wearable sensors for touchless and intelligent information communication. Nano-Micro Lett 13:1–16. Springer Science and Business Media B.V. [cited 2023 May 4]. Available from: https://link.springer.com/article/10.1007/s40820-021-00720-5

  9. Vaccumshmeltze: Iron-cobalt alloys

  10. Zheng Y, Zhao H, Cai Y, Jurado-Sánchez B, Dong R (2022) Recent advances in one-dimensional micro/nanomotors: fabrication, propulsion and application. Nano Micro Lett 15:1–29. Springer [cited 2023 May 4]. Available from: https://link.springer.com/article/10.1007/s40820-022-00988-1

  11. Wang J, Dong R, Wu H, Cai Y, Ren B (2019) A review on artificial micro/nanomotors for cancer-targeted delivery, diagnosis, and therapy. Nano-Micro Lett 12:1–19. Springer [cited 2023 May 4]. Available from: https://link.springer.com/article/10.1007/s40820-019-0350-5

  12. Qin K, Chen C, Pu X, Tang Q, He W, Liu Y et al (2021) Magnetic array assisted triboelectric nanogenerator sensor for real-time gesture interaction. Nano-Micro Lett 13:1–9. Springer Science and Business Media B.V

  13. Choi S, Kim SH, Yoon YK, Allen MG (2006) A magnetically excited and sensed MEMS-based resonant compass. IEEE Trans Magn 42:3506–3508

    Article  Google Scholar 

  14. Jackson N, Pedrosa FJ, Bollero A, Mathewson A, Olszewski OZ (2016) Integration of thick-film permanent magnets for MEMS applications. J Microelectromech Syst 25:716–724

    Article  Google Scholar 

  15. Lu H, Zhu J, Guo Y (2005) Development of a slotless tubular linear interior permanent magnet micro motor for robotic applications. INTERMAG ASIA 2005 Dig IEEE Int Magn Conf 41:105

  16. Yufeng S, Wenyuan C, Feng C, Weiping Z (2006) Electro-magnetically actuated valveless micropump with two flexible diaphragms. Int J Adv Manuf Technol 30:215–220

    Article  Google Scholar 

  17. Hagiwara M, Kawahara T, Feng L, Yamanishi Y, Arai F (2011) On-chip dual-arm microrobot driven by permanent magnets for high speed cell enucleation. Proc IEEE Int Conf Micro Electro Mech Syst. IEEE; 189–92

  18. Liu Z, Nakamura T (2006) Realization of wire-in-hole operation with a two-finger precision manipulator. Int J Adv Manuf Technol 28:1230–1236

    Article  Google Scholar 

  19. Fratzl M, Delshadi S, Devillers T, Bruckert F, Cugat O, Dempsey NM et al (2018) Magnetophoretic induced convective capture of highly diffusive superparamagnetic nanoparticles. Soft Matter 14:2671–2681

    Article  Google Scholar 

  20. Munoz F, Alici G, Li W, Sitti M (2016) Size optimization of a magnetic system for drug delivery with capsule robots. IEEE Trans Magn. IEEE 52

  21. Villalba-Alumbreros G, Moron-Alguacil C, Fernandez-Munoz M, Valiente-Blanco I, Diez-Jimenez E (2022) Scale effects on performance of BLDC micromotors for internal biomedical applications: a finite element analysis. J Med Device :16. American Society of Mechanical Engineers Digital Collection [cited 2022 Jul 5]. Available from: https://asmedigitalcollection.asme.org/medicaldevices/article/16/3/031011/1140703/Scale-Effects-on-Performance-of-BLDC-Micromotors

  22. Martínez Rojas JA, Fernández JL, Montero RS, Espí PLL, Diez-Jimenez E (2021) Model-based systems engineering applied to trade-off analysis of wireless power transfer technologies for implanted biomedical microdevices. Sensors 21

  23. Martinez-Muñoz M, Diez-Jimenez E, Villalba-Alumbreros GV, Michalowski M, Lastra-Sedano A (2019) Geometrical dependence in fixtures for 2D multipole micromagnets magnetization pattering. Appl Comput Electromagn Soc J 34

  24. Bodduluri MT, Lisec T, Blohm L, Lofink F, Wagner B (2019) High-performance integrated hard magnets for MEMS applications. MikroSystemTechnik Kongress 2019 - Mikroelektron MEMS-MOEMS Syst - Saulen der Digit und Kunstl Intelligenz, Proc. 150–3

  25. Villalba-Alumbreros G, Lopez-Camara E, Martínez-Gómez J, Cobreces S, Valiente-Blanco I, Diez-Jimenez E (2023) Experimental study of micromilling process and deburring electropolishing process on FeCo-based soft magnetic alloys. Int J Adv Manuf Technol :3235–48. Springer London

  26. Diez-Jimenez E, Valiente-Blanco I, Villalba-Alumbreros G, Fernandez-Munoz M, Lopez-Pascual D, Lastra-Sedano A et al (2022) Multilayered microcoils for microactuators and characterization of their operational limits in body-like environments. IEEE/ASME Trans Mechatronics, 1–6

  27. Villalba-alumbreros G, Fernandez-munoz M, Lopez-pascual D, Valiente I, Lastra-sedano A, Díez-Jimenez E (2022) Desarrollo de una máquina bobinadora semiautomática para la microfabricación de bobinados, antenas y solenoides micrométricos, pp 22–4

  28. ListenInc (2008) Permanent Magnets For MEMS. 18:1255–66

  29. Timoshkov IV, Khanko AV, Kurmashev VI, Grapov DV, Kastevich AA, Govor GA et al (2019) Applications of UV-LIGA and grayscale lithography for display technologies. Dokl BGUIR 7:81–87

    Article  Google Scholar 

  30. Khosla A, Kassegne S (2015) Fabrication of NdFeB-based permanent rare-earth micromagnets by novel hybrid micromolding process. Microsyst Technol 21:2315–2320

    Article  Google Scholar 

  31. Jiang Y, Masaoka S, Uehara M, Fujita T, Higuchi K, Maenaka K (2011) Micro-structuring of thick NdFeB films using high-power plasma etching for magnetic MEMS application. J Micromech Microeng 21

  32. Keller FO, Haettel R, Devillers T, Dempsey NM (2022) Batch fabrication of 50 μm-thick anisotropic Nd-Fe-B micro-magnets. IEEE Trans Magn 58

  33. Nakamura H, Hirota K, Minowa T, Honshima M (2005) Magnetic properties of extremely small Nd-Fe-B sintered magnet. INTERMAG ASIA 2005 Dig IEEE Int Magn Conf 41:476

  34. Knowles MRH, Rutterford G, Karnakis D, Ferguson A (2007) Micro-machining of metals, ceramics and polymers using nanosecond lasers. Int J Adv Manuf Technol 33:95–102

    Article  Google Scholar 

  35. Putzer M, Ackerl N, Wegener K (2021) Geometry assessment of ultra-short pulsed laser drilled micro-holes. Int J Adv Manuf Technol. The International Journal of Advanced Manufacturing Technology 117:2445–2452

    Article  Google Scholar 

  36. Zheng HY, Liu H, Wan S, Lim GC, Nikumb S, Chen Q (2006) Ultrashort pulse laser micromachined microchannels and their application in an optical switch. Int J Adv Manuf Technol 27:925–929

    Article  Google Scholar 

  37. Geng Z, Tong Z, Huang G, Zhong W, Cui C, Xu X et al (2022) Micro-grooving of brittle materials using textured diamond grinding wheels shaped by an integrated nanosecond laser system. Int J Adv Manuf Technol. Springer London 119:5389–5399

    Google Scholar 

  38. Park CK, Farson DF (2016) Precise machining of disk shapes from thick metal substrates by femtosecond laser ablation. Int J Adv Manuf Technol 83:2049–2056

    Article  Google Scholar 

  39. Peterson BA (2016) Geometrically-complex magnetic field distributions enabled by bulk, laser-micromachined permanent magnets at the submillimeter scale [Internet]. Publicly Access. Penn Diss. Available from: http://ezproxy.lib.ryerson.ca/login?url=https://search.proquest.com/docview/1859672253?accountid=13631%0Ahttp://sfx.scholarsportal.info/ryerson??url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&genre=dissertations+%26+theses&sid=ProQ:ProQ

  40. Peterson BA, Herrault F, Oniku OD, Kaufman ZA, Arnold DP, Allen MG (2012) Assessment of laser-induced damage in laser-micromachined rare-earth permanent magnets. IEEE Trans Magn 48:3606–3609

    Article  Google Scholar 

  41. Marimuthu S, Smith B (2021) Water-jet guided laser drilling of thermal barrier coated aerospace alloy. Int J Adv Manuf Technol 113:177–191

    Article  Google Scholar 

  42. Zhang Q, Sun SF, Zhang FY, Wang J, Lv QQ, Shao Y et al (2020) A study on film hole drilling of IN718 superalloy via laser machining combined with high temperature chemical etching. Int J Adv Manuf Technol 106:155–162

    Article  Google Scholar 

  43. Kanitz A, Hoppius JS, Fiebrandt M, Awakowicz P, Esen C, Ostendorf A et al (2017) Impact of liquid environment on femtosecond laser ablation. Appl Phys A Mater Sci Process 123:1–7.  Springer Berlin Heidelberg

  44. Maack P, Kanitz A, Hoppius J, Köhler J, Esen C, Ostendorf A (2022) Surface modification of silicon by femtosecond laser ablation in liquid. In: Watanabe A, Kling R, editors. Laser-based micro- nanoprocessing XVI. SPIE, p. 119890L. https://doi.org/10.1117/12.2608708

  45. Kanitz A, Kalus MR, Gurevich EL, Ostendorf A, Barcikowski S, Amans D (2019) Review on experimental and theoretical investigations of the early stage, femtoseconds to microseconds processes during laser ablation in liquid-phase for the synthesis of colloidal nanoparticles. Plasma Sources Sci Technol 28

  46. Hoppius JS, Maragkaki S, Kanitz A, Gregorčič P, Gurevich EL (2019) Optimization of femtosecond laser processing in liquids. Appl Surf Sci 467–468:255–60. Elsevier. https://doi.org/10.1016/j.apsusc.2018.10.121

  47. Menéndez-Manjón A, Wagener P, Barcikowski S (2011) Transfer-matrix method for efficient ablation by pulsed laser ablation and nanoparticle generation in liquids. J Phys Chem C 115:5108–14. [cited 2023 Aug 22]. Available from: https://pubs.acs.org/sharingguidelines

  48. Shih CY, Streubel R, Heberle J, Letzel A, Shugaev MV, Wu C et al (2018) Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: the origin of the bimodal size distribution. Nanoscale 10:6900–10. The Royal Society of Chemistry; [cited 2023 Aug 22]. Available from: https://pubs.rsc.org/en/content/articlehtml/2018/nr/c7nr08614h

  49. Kardelky S, Gebert A, Gutfleisch O, Hoffmann V, Schultz L (2005) Prediction of the oxidation behaviour of Sm-Co-based magnets. J Magn Magn Mater 290-291 PA:1226–9

Download references

Acknowledgements

IMDEA researchers thank Dr. Mariela Menghini for sample saturation prior VSM measurements.

Funding

This research has been supported by the European Union’s Horizon 2020 research and innovation program under grant agreement No 857654–UWIPOM2. This work has been partially supported by the Spanish Ministry of Science, Innovation and Universities under Ramón & Cajal Research Grant RYC-2017-23684. J. S-M. acknowledges financial support from the Comunidad de Madrid (PEJD-2019-PRE/IND-17045).

Author information

Authors and Affiliations

Authors

Contributions

Gabriel Villalba-Alumberos: writing — review and editing, methodology, investigation. Alberto Bollero and Jimena Soler-Morala: funding acquisition, management and conceptualization of research, data curation and writing, investigation. Alexander Kanitz: validation, resources. Jan Hoppius: software, investigation. Ignacio Valiente-Blanco: validation, resources. Efren Diez-Jimenez: validation, writing — original draft.

Corresponding author

Correspondence to Gabriel Villalba-Alumbreros.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villalba-Alumbreros, G., Soler-Morala, J., Bollero, A. et al. Microfabrication of Sm2Co17 micromagnets for MEMS and micromotors using ultrashort pulsed hydro laser micromilling process. Int J Adv Manuf Technol 129, 4961–4970 (2023). https://doi.org/10.1007/s00170-023-12642-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12642-0

Keywords

Navigation