Skip to main content
Log in

Self-piercing riveting of dissimilar carbon fiber-reinforced composites and aluminum alloy sheets: state-of-the-art achievements

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Lightweight design of the vehicle is critical in reducing carbon emissions and energy consumption. In recent decades, high-performance carbon fiber–reinforced plastic (CFRP) composites, which are the most direct and effective choice for lightweight designs, are broadly applied in the vehicle industry to meet both strength and lightweight requirements. However, among many reasons for car body manufacturing, the higher price of composite is one of the limitations for its application, so the utilization of hybrid composite materials and metallic materials is widely adopted together in guaranteeing the economy of vehicle development and manufacturing. Aiming at the hybrid metal-composite multi-layer joint combination requirement, how to implement a valid connection has become a complex challenge. Currently, the more popular mechanical join approach is using self-piercing riveting (SPR) technology. This paper summarizes the state-of-the-art achievements in the aforementioned research field to connect hybrid composites and metallic materials especially by using SPR methods, which involve the process, the joinability, the mechanical behavior of joints, and the corresponding FE modeling methods. This paper also provides a detailed discussion of self-piercing riveting from a relatively comprehensive point of view to provide perspectives for subsequent in-depth research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Tisza M, Czinege I (2018) Comparative study of the application of steels and aluminium in lightweight production of automotive parts. Int J Light Mater Manuf 1:229–238. https://doi.org/10.1016/j.ijlmm.2018.09.001

    Article  Google Scholar 

  2. Miller WS, Zhuang L, Bottema J, Wittebrood AJ, Smet P, Haszler A, Vieregge A (2000) Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A Struct Mater 280:37–49. https://doi.org/10.1016/S0921-5093(99)00653-X

    Article  Google Scholar 

  3. Sim K-B, Baek D, Shin J-H, Shim G-S, Jang S-W, Kim H-J, Hwang J-W, Roh J-U (2020) Enhanced surface properties of carbon fiber reinforced plastic by epoxy modified primer with plasma for automotive applications. Polymers (Basel) 12:556. https://doi.org/10.3390/polym12030556

    Article  Google Scholar 

  4. Matzenmiller A, Lubliner J, Taylor RL (1995) A constitutive model for anisotropic damage in fiber-composites. Mech Mater 20:125–152. https://doi.org/10.1016/0167-6636(94)00053-0

    Article  Google Scholar 

  5. Shamloo A, Fathi B, Elkoun S, Rodrigue D, Soldera A (2018) Impact of compression molding conditions on the thermal and mechanical properties of polyethylene. J Appl Polym Sci 135:46176. https://doi.org/10.1002/app.46176

    Article  Google Scholar 

  6. Vorderbrüggen J, Meschut G (2019) Investigations on a material-specific joining technology for CFRP hybrid joints along the automotive process chain. Compos Struct 230:111533. https://doi.org/10.1016/j.compstruct.2019.111533

    Article  Google Scholar 

  7. Zhang DW, Zhang Q, Fan X, Zhao S (2019) Review on joining process of carbon fiber-reinforced polymer and metal: applications and outlook. Rare Metal Mat Eng 48:44–54

    Google Scholar 

  8. Cui J, Gao S, Jiang H, Huang X, Lu G, Li G (2020) Adhesive bond-electromagnetic rivet hybrid joining technique for CFRP/Al structure: process, design and property. Compos Struct 244:112316. https://doi.org/10.1016/j.compstruct.2020.112316

    Article  Google Scholar 

  9. Elmarakbi A (2012) Crashworthness analysis of composite and thermoplastic foam structure for automotive bumper subsystem. Adv Compos Mater Automot Appl. https://doi.org/10.1002/9781118535288.ch6

    Article  Google Scholar 

  10. Kim HC, Shin DK, Lee JJ, Kwon JB (2014) Crashworthiness of aluminum/CFRP square hollow section beam under axial impact loading for crash box application. Compos Struct 112:1–10. https://doi.org/10.1016/j.compstruct.2014.01.042

    Article  Google Scholar 

  11. Gao Y, Liu Z, Xu Y, Xu X, Feng Z (2020) Research on the application of CFRP in automobile panels. Automot Eng 42:978–984. https://doi.org/10.19562/j.chinasae.qcgc.2020.07.019

    Article  Google Scholar 

  12. Zang J, Zhou J, Qiu R (2020) Integrated optimization design of structure/material of CFRP automobile collision avoidance beam. Mach Des & Manuf 8:206–210. https://doi.org/10.19356/j.cnki.1001-3997.2020.08.048

  13. Sun G, Li S, Liu Q et al (2016) Experimental study on crashworthiness of empty/aluminum foam/honeycomb-filled CFRP tubes. Compos Struct 152:969–993. https://doi.org/10.1016/j.compstruct.2016.06.019

    Article  Google Scholar 

  14. Qin G, Na J, Mu W, Tan W (2019) Effect of thermal cycling on the degradation of adhesively bonded CFRP/aluminum alloy joints for automobiles. Int J Adhes Adhes 95:102439. https://doi.org/10.1016/j.ijadhadh.2019.102439

    Article  Google Scholar 

  15. Mori K, Bay N, Fratini L, Micari F, Tekkaya AE (2013) Joining by plastic deformation. CIRP Ann 62:673–694. https://doi.org/10.1016/j.cirp.2013.05.004

    Article  Google Scholar 

  16. Zheng G, He Z, Wang K, Liu X, Luo Q, Li Q, Sun G (2021) On failure mechanisms in CFRP/Al adhesive joints after hygrothermal aging degradation following by mechanical tests. Thin-Walled Struct 158:107184. https://doi.org/10.1016/j.tws.2020.107184

    Article  Google Scholar 

  17. Ren S, Ma Y, Saeki S, Iwamoto Y, Chen C, Ma N (2020) Fracture mechanism and strength evaluation of Al5052/CFRP joint produced by coaxial one-side resistance spot welding. Compos Struct 252:112766. https://doi.org/10.1016/j.compstruct.2020.112766

    Article  Google Scholar 

  18. Kumar S, Avinash G, Vimal E (2020) Ductility effect on clinching joint strength in lap-shear configuration loading. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.06.144

    Article  Google Scholar 

  19. Lambiase F, Di Ilio A (2016) Damage analysis in mechanical clinching: experimental and numerical study. J Mater Process Technol 230:109–120. https://doi.org/10.1016/j.jmatprotec.2015.11.013

    Article  Google Scholar 

  20. Jäckel M, Maul S, Kraus C, Drossel W-G (2018) Numerical simulation of thermal supported self-pierce riveting of an ultra high-strength aluminium alloy. J Phys Conf Ser 1063:12074. https://doi.org/10.1088/1742-6596/1063/1/012074

    Article  Google Scholar 

  21. Durandet Y, Deam R, Beer A, Song W, Blacket S (2010) Laser assisted self-pierce riveting of AZ31 magnesium alloy strips. Mater Des 31:S13–S16. https://doi.org/10.1016/j.matdes.2009.10.038

    Article  Google Scholar 

  22. Zhuang W (2018) Joint performance analysis on connection of ultrahigh-strength steel and aluminum alloy with hot riveting. J JiLin Univ 4:8

    Google Scholar 

  23. Ying L, Gao T, Dai M, Hu P, Dai J (2021) Towards joinability of thermal self-piercing riveting for AA7075-T6 aluminum alloy sheets under quasi-static loading conditions. Int J Mech Sci 189:105978. https://doi.org/10.1016/j.ijmecsci.2020.105978

    Article  Google Scholar 

  24. Fuhrmeister R (1977) Method and apparatus for riveting, US Patient: US19770788645A

  25. Porcaro R, Hanssen AG, Langseth M, Aalberg A (2006) Self-piercing riveting process: an experimental and numerical investigation. J Mater Process Technol 171:10–20. https://doi.org/10.1016/j.jmatprotec.2005.05.048

    Article  Google Scholar 

  26. Hoang NH, Porcaro R, Langseth M, Hanssen AG (2010) Self-piercing riveting connections using aluminium rivets. Int J Solids Struct 47:427–439. https://doi.org/10.1016/j.ijsolstr.2009.10.009

    Article  Google Scholar 

  27. Mori K, Abe Y, Kato T (2014) Self-pierce riveting of multiple steel and aluminium alloy sheets. J Mater Process Technol 214:2002–2008. https://doi.org/10.1016/j.jmatprotec.2013.09.007

    Article  Google Scholar 

  28. He X, Zhao L, Deng C, Xing B, Gu F, Ball A (2015) Self-piercing riveting of similar and dissimilar metal sheets of aluminum alloy and copper alloy. Mater Des 65:923–933. https://doi.org/10.1016/j.matdes.2014.10.002

    Article  Google Scholar 

  29. Di Franco G, Fratini L, Pasta A, Ruisi VF (2013) On the self-piercing riveting of aluminium blanks and carbon fibre composite panels. Int J Mater Form 6:137–144. https://doi.org/10.1007/s12289-011-1067-2

    Article  Google Scholar 

  30. Zhang J, Yang S (2014) Self-piercing riveting of aluminum alloy and thermoplastic composites. J Compos Mater 49:1493–1502. https://doi.org/10.1177/0021998314535456

    Article  Google Scholar 

  31. Hirsch F, Müller S, Machens M, Staschko R, Fuchs N, Kästner M (2017) Simulation of self-piercing rivetting processes in fibre reinforced polymers: material modelling and parameter identification. J Mater Process Technol 241:164–177. https://doi.org/10.1016/j.jmatprotec.2016.10.010

    Article  Google Scholar 

  32. Zhang X, He X, Xing B, Wei W, Lu J (2020) Pre-holed self-piercing riveting of carbon fibre reinforced polymer laminates and commercially pure titanium sheets. J Mater Process Technol 279:116550. https://doi.org/10.1016/j.jmatprotec.2019.116550

    Article  Google Scholar 

  33. Li D, Chrysanthou A, Patel I, Williams G (2017) Self-piercing riveting-a review. Int J Adv Manuf Technol 92:1777–1824. https://doi.org/10.1007/s00170-017-0156-x

    Article  Google Scholar 

  34. Available at: https://www.atlascopco.com/en-pk/itba/products/joining-solutions/self-pierce-riveting

  35. Oh S, Kim HK, Jeong T-E, Kam D-H, Ki H (2020) Deep-learning-based predictive architectures for self-piercing riveting process. IEEE Access 8:116254–116267. https://doi.org/10.1109/ACCESS.2020.3004337

    Article  Google Scholar 

  36. Zhao H, Han L, Liu Y, Liu X (2021) Quality prediction and rivet/die selection for SPR joints with artificial neural network and genetic algorithm. J Manuf Process 66:574–594. https://doi.org/10.1016/j.jmapro.2021.04.033

    Article  Google Scholar 

  37. Daniel Freiberg AIGH (2021) The effect of quench parameters on self-piercing rivet joint performance in a high strength automotive 6111 aluminum alloy. SAE Int 3:1790–1800. https://doi.org/10.4271/2021-01-0273

  38. Chanyang Kim KMMH (2021) Development of analytical strength estimator for self-piercing rivet joints through observation of finite element simulations. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2021.106499

    Article  Google Scholar 

  39. Sadowski T, Knec M (2013) Application of DIC technique for monitoring of deformation process of SPR hybrid joints / Zastosowanie Techniki Dic Do Obserwacji Procesu Deformacji Hybrydowych Połaczen Typu Spr. Arch Metall Mater 58:119–125. https://doi.org/10.2478/v10172-012-0161-x

    Article  Google Scholar 

  40. Ueda M, Miyake S, Hasegawa H, Hirano Y (2012) Instantaneous mechanical fastening of quasi-isotropic CFRP laminates by a self-piercing rivet. Compos Struct 94:3388–3393. https://doi.org/10.1016/j.compstruct.2012.04.027

    Article  Google Scholar 

  41. Haque R (2018) Quality of self-piercing riveting (SPR) joints from cross-sectional perspective: a review. Arch Civ Mech Eng 18:83–93. https://doi.org/10.1016/j.acme.2017.06.003

    Article  Google Scholar 

  42. Mori K, Kato T, Abe Y, Ravshanbek Y (2006) Plastic joining of ultra high strength steel and aluminium alloy sheets by self piercing rivet. CIRP Annals 55:1–4

    Article  Google Scholar 

  43. Mucha J (2011) A study of quality parameters and behaviour of self-piercing riveted aluminium sheets with different joining conditions. Strojniški Vestn - J Mech Eng 57:323–333. https://doi.org/10.5545/sv-jme.2009.043

    Article  Google Scholar 

  44. Xu Y (2013) Effects of factors on physical attributes of self-piercing riveted joints. Sci Technol Weld Join 11:666–671. https://doi.org/10.1179/174329306X131866

    Article  Google Scholar 

  45. Pickin CG, Young K, Tuersley I (2007) Joining of lightweight sandwich sheets to aluminium using self-pierce riveting. Mater Des 28:2361–2365. https://doi.org/10.1016/j.matdes.2006.08.003

    Article  Google Scholar 

  46. Li DZ, Han L, Shergold M, Thornton M, Williams G (2013) Influence of rivet tip geometry on the joint quality and mechanical strengths of self-piercing riveted aluminium joints. Mater Sci Forum 765:746–750. https://doi.org/10.4028/www.scientific.net/MSF.765.746

    Article  Google Scholar 

  47. Liu Y, Zhuang W (2019) Self-piercing riveted-bonded hybrid joining of carbon fibre reinforced polymers and aluminium alloy sheets. Thin-Walled Struct 144:106340. https://doi.org/10.1016/j.tws.2019.106340

    Article  Google Scholar 

  48. Haque R, Durandet Y (2016) Strength prediction of self-pierce riveted joint in cross-tension and lap-shear. Mater Des 108:666–678. https://doi.org/10.1016/j.matdes.2016.07.029

    Article  Google Scholar 

  49. Kroll L, Mueller S, Mauermann R, Gruetzner R (2011) Strength of self-piercing riveted joints for cfrp/aluminium sheets. Proceedings of 18th International Conference on Composite Materials, Jeju Island, South Korea, pp 1–6

  50. Jiang H, Sun L, Liang J, Li G, Cui J (2019) Shear failure behavior of CFRP/Al and steel/Al electromagnetic self-piercing riveted joints subject to high-speed loading. Compos Struct 230:111500. https://doi.org/10.1016/j.compstruct.2019.111500

    Article  Google Scholar 

  51. Wilhelm MF, Fuessel U, Richter T, Riemer M, Foerster M (2015) Analysis of the shear-out failure mode for CFRP connections joined by forming. J Compos Mater 49:981–993. https://doi.org/10.1177/0021998314528264

    Article  Google Scholar 

  52. Tamboli S, Pandey A, Bongale A, Kumar S (2019) Performance evaluation of cracked aluminum alloy repaired with carbon fiber reinforced polymer for aerospace application. Mater Res Express 6:115326. https://doi.org/10.1088/2053-1591/ab493c

    Article  Google Scholar 

  53. Available at: www.auto-testing.net

  54. Di Franco G, Fratini L, Pasta A (2013) Analysis of the mechanical performance of hybrid (SPR/bonded) single-lap joints between CFRP panels and aluminum blanks. Int J Adhes Adhes 41:24–32. https://doi.org/10.1016/j.ijadhadh.2012.10.008

    Article  Google Scholar 

  55. Gay A, Lefebvre F, Bergamo S, Valiorgue F, Chalandon P, Michel P, Bertrand P (2016) Fatigue performance of a self-piercing rivet joint between aluminum and glass fiber reinforced thermoplastic composite. Int J Fatigue 83:127–134. https://doi.org/10.1016/j.ijfatigue.2015.10.004

    Article  Google Scholar 

  56. Rao HM, Kang J, Huff G, Avery K, Su X (2017) Impact of rivet head height on the tensile and fatigue properties of lap shear self-pierced riveted CFRP to aluminum. SAE Int J Mater Manuf 10:167–173. https://doi.org/10.4271/2017-01-0477

    Article  Google Scholar 

  57. Rao HM, Kang J, Huff G, Avery K (2018) Impact of specimen configuration on fatigue properties of self-piercing riveted aluminum to carbon fiber reinforced polymer composite. Int J Fatigue 113:11–22. https://doi.org/10.1016/j.ijfatigue.2018.03.031

    Article  Google Scholar 

  58. Di Franco G, Fratini L, Pasta A (2012) Influence of the distance between rivets in self-piercing riveting bonded joints made of carbon fiber panels and AA2024 blanks. Mater Des 35:342–349. https://doi.org/10.1016/j.matdes.2011.09.036

    Article  Google Scholar 

  59. Liang J, Jiang H, Zhang J, Wu X, Zhang X, Li G, Cui J (2019) Investigations on mechanical properties and microtopography of electromagnetic self-piercing riveted joints with carbon fiber reinforced plastics/aluminum alloy 5052. Arch Civ Mech Eng 19:240–250. https://doi.org/10.1016/j.acme.2018.11.001

    Article  Google Scholar 

  60. Kang J, Rao H, Zhang R, Avery K, Su X (2016) Tensile and fatigue behaviour of self-piercing rivets of CFRP to aluminium for automotive application. IOP Conf Ser Mater Sci Eng 137:12025. https://doi.org/10.1088/1757-899X/137/1/012025

    Article  Google Scholar 

  61. Meschut G, Gude M, Augenthaler F, Geske V (2014) Evaluation of damage to carbon-fibre composites induced by self-pierce riveting. Procedia CIRP 18:186–191. https://doi.org/10.1016/j.procir.2014.06.129

    Article  Google Scholar 

  62. Fratini L, Ruisi VF (2009) Self-piercing riveting for aluminium alloys-composites hybrid joints. Int J Adv Manuf Technol 43:61–66. https://doi.org/10.1007/s00170-008-1690-3

    Article  Google Scholar 

  63. Xue Z, Wang X, Xu C, Chen Z, Feng Q, Liu J, Li L (2023) Equivalent characterization of pre-strained material properties and mechanical behavior prediction of steel/aluminum self-piercing riveted joints. Thin-Walled Struct 182:110243. https://doi.org/10.1016/j.tws.2022.110243

    Article  Google Scholar 

  64. Leconte N, Bourel B, Lauro F, Badulescu C, Markiewicz E (2020) Strength and failure of an aluminum/PA66 self-piercing riveted assembly at low and moderate loading rates: experiments and modeling. Int J Impact Eng 142:103587. https://doi.org/10.1016/j.ijimpeng.2020.103587

    Article  Google Scholar 

  65. Arcan M, Hashin Z, Voloshin A (1978) A method to produce uniform plane-stress states with applications to fiber-reinforced materials - a specially designed specimen yields material properties under pure shear or uniform plane-stress conditions. Exp Mech 18:141–146. https://doi.org/10.1007/BF02324146

    Article  Google Scholar 

  66. Karim MA, Bae J-H, Kam D-H, Kim C, Park Y-D (2019) Critical influence of rivet head height on corrosion performance of CFRP/aluminum self-piercing riveted joints. Corros Sci Technol 118:92–101. https://doi.org/10.14773/cst.2019.18.3.92

    Article  Google Scholar 

  67. Jiang H, Sun L, Dong D, Li G, Cui J (2019) Microstructure and mechanical property evolution of CFRP/Al electromagnetic riveted lap joint in a severe condition. Eng Struct 180:181–191. https://doi.org/10.1016/j.engstruct.2018.11.042

    Article  Google Scholar 

  68. Lim YC, Jun J, Leonard DN, Li Y, Chen J, Brady MP, Feng Z (2021) Study of galvanic corrosion and mechanical joint properties of AZ31B and carbon-fiber–reinforced polymer joined by friction self-piercing riveting. J Magnes Alloy. https://doi.org/10.1016/j.jma.2021.05.003

    Article  Google Scholar 

  69. Mandel M, Krüger L (2013) Determination of pitting sensitivity of the aluminium alloy EN AW-6060-T6 in a carbon-fibre reinforced plastic/aluminium rivet joint by finite element simulation of the galvanic corrosion process. Corros Sci 73:172–180. https://doi.org/10.1016/j.corsci.2013.03.033

    Article  Google Scholar 

  70. Mandel M, Krüger L (2015) Long-term corrosion studies of a CFRP/EN AW-6060-T6 self-piercing rivet joint and a steel/EN AW-6060-T6 blind rivet joint. Mater Today Proc 2:S131–S140. https://doi.org/10.1016/j.matpr.2015.05.030

    Article  Google Scholar 

  71. Karim MA, Bae J-H, Kam D-H, Kim C, Choi W-H, Park Y-D (2020) Assessment of rivet coating corrosion effect on strength degradation of CFRP/aluminum self-piercing riveted joints. Surf Coatings Technol 393:125726. https://doi.org/10.1016/j.surfcoat.2020.125726

    Article  Google Scholar 

  72. Available at: https://www.youtube.com/watch?v=o7Co5cZhOUw. Accessed 4 May 2020

  73. Available at: https://www.dynaexamples.com/introduction/process_simulation/self-piercing-riveting. Accessed 27 Feb 2023

  74. Bouchard PO, Laurent T, Tollier L (2008) Numerical modeling of self-pierce riveting—From riveting process modeling down to structural analysis. J Mater Process Technol 202:290–300. https://doi.org/10.1016/j.jmatprotec.2007.08.077

  75. Available at: https://www.simufact.com/module-mechanical-joining.html. Accessed 2 Nov 2023.

  76. Atzeni E, Ippolito R, Settineri L (2007) FEM Modeling of Self-Piercing Riveted Joint. Key Eng Mater 344:655–662. https://doi.org/10.4028/www.scientific.net/KEM.344.655

  77. Casalino G, Rotondo A, Ludovico A (2008) On the numerical modelling of the multiphysics self piercing riveting process based on the finite element technique. Adv Eng Softw 39:787–795. https://doi.org/10.1016/j.advengsoft.2007.12.002

  78. Puck A, Schürmann H (1998) Failure analysis of frp laminates by means of physically based phenomenological models. Compos Sci Technol 58:1045–1067. https://doi.org/10.1016/S0266-3538(96)00140-6

  79. Drossel WG, Mauermann R, Grützner R, Mattheß D (2013) Numerical and experimental analysis of self piercing riveting process with carbon fiber-reinforced plastic and aluminium sheets. Key Eng Mater 554–557:1045–1054. https://doi.org/10.4028/www.scientific.net/KEM.554-557.1045

  80. Rao Z, Ou L, Wang Y, Wang P-C (2020) A self-piercing-through riveting method for joining of discontinuous carbon fiber reinforced nylon 6 composite. Compos Struct 237:111841. https://doi.org/10.1016/j.compstruct.2019.111841

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No.52375310) and Chinese Fundamental Research Funds for the Central University (DUT21JC41).

Author information

Authors and Affiliations

Authors

Contributions

Liang Ying: methodology, conceptualization, writing—review and editing, supervision. Quanyi Dong: writing—original draft, investigation. Tianhan Gao: visualization, validation. Minghua Dai: formal analysis, funding acquisition. Ping Hu: project administration.

Corresponding author

Correspondence to Liang Ying.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, L., Dong, Q., Gao, T. et al. Self-piercing riveting of dissimilar carbon fiber-reinforced composites and aluminum alloy sheets: state-of-the-art achievements. Int J Adv Manuf Technol 130, 1–22 (2024). https://doi.org/10.1007/s00170-023-12596-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12596-3

Keywords

Navigation