Skip to main content
Log in

Thermomechanical effect on the properties of stainless steels using rotative friction welding: an experimental study on 304L and 316L grades

  • Original Article
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The main objective of this work is to analyze structural hardening by direct friction welding on two austenitic materials of the AISI 304L and AISI 316L series that were welded separately (similar welding) followed by a combined (mixed) welding. The friction welding parameters such as rotation speed, applied pressure (friction and forging), and holding time were carefully selected and optimized. Forty welding operations and thirty post-welding nominal tensile tests were performed, with the sole purpose of obtaining the rational curves. To achieve this objective, the results of the tensile tests were collected and analyzed. The rational curves allowed us to proceed by classical analytical modeling to quantify the effect of welding on the work-hardening behavior of the two stainless steel samples. The microstructure of each welded joint condition was analyzed and compared to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hassan AJ, Boukharouba T, Miroud D, Ramtani S (2019) Metallurgical and mechanical behavior of AISI 316- AISI 304 during friction welding process. Int J Eng Transactions B: Applications 32(2):284–291. https://doi.org/10.5829/ije.2019.32.02b.16

    Article  Google Scholar 

  2. Vill VI (1962) Friction welding of metals. American Welding Society, Inc, New York

    Google Scholar 

  3. Kimura M, Kusaka M, Kaizu K, Nakata K, Nagatsuka K (2016) Friction welding technique and joint properties of thin-walled pipe friction welded joint between type 6063 aluminum alloy and AISI 304 austenitic stainless steel. Int J Adv Manuf Technol 82:489–499

    Article  Google Scholar 

  4. T.J., Jessop and W.O., Dinsdale, Friction welding dissimilar metals, Proc. of Master-Maintenance industrielle et fiabilité-Université Badji Mokhtar Annaba-Annaba-Algérie.

  5. Samene, A. et Harem, M., Optimisation des paramètres de procède du soudage par friction rotative, 2017. Mémoire de Master – Génie mécanique, Université Mohamed El-Bachir El Ibrahimi-Bordj Bou Arreridj-Algérie.

  6. Hamza S, Boumerzoug Z, Raouache E, Delaunois F (2019) Simulated heat affected zone in welded stainless steel 304L. Acta Metall Slovaca 25(3):251–258

    Article  Google Scholar 

  7. Kweon H, Kim J, Song O, Oh D (2020) Determination of true stress-strain curve of type 304 and 316 stainless steels using a typical tensile test and finite element analysis. Nucl Eng Technol 53. https://doi.org/10.1016/j.net.2020.07.014

  8. Niyazi Ozdemir, Firat University, Sarsılmaz F, Hasçalık A Effect of rotational speed on the interface properties of friction-welded AISI 304L to 4340 steel. Mater Des (1980-2015) 28(1):301–307

  9. Attallah MM, Preuss M (2012) Inertia friction welding (IFW) for aerospace applications. Welding Joining of Aerospace Mater:25–74

  10. Nasution AK, Murni NS, Sing NB, Idris MH, Hermawan H (2015) Partially degradable friction-welded pure iron–stainless steel 316L bone pin. J Biomed Mater Res Part B Appl Biomater 103:31–38

    Article  Google Scholar 

  11. Ludwik P (1909) Elemente der Technologischen Mechanic, Verl. Julius Springer 32

  12. Hollomon JH (1945) Tensile deformation. Trans AIME 162:268–290

    Google Scholar 

  13. Swift HW (1952) Plastic instability under plane stress. J Mech Phys Solids 1:1–18

    Article  Google Scholar 

  14. Ludwigson DC (1971) Modified stress-strain relation for FCC metals and alloys. Metall Trans A 2:2825–2828

    Article  Google Scholar 

  15. Kumar JMB, Bahaa Saleh H, Fayaz AC, Gera T, Nisar KS, Saleel CA (2023) Experimental and analytical investigation on friction welding dissimilar joints for aerospace applications. Ain Shams Eng J 14(2):101853

    Article  Google Scholar 

  16. Pratyusha M, Ramana PV, Prasanthi G (2021) Evaluation of tensile strength of dissimilar metal pure aluminium and pure copper friction welds. Mater Today Proc 38:2271–2274

    Article  Google Scholar 

  17. Delgado-Pamanes M, Alvarez-Montufar J, Reyes-Osorio L, Garza C, Suárez-Rosales M, Chávez-Alcalá J (2022) Evaluation of optimal processing parameters for a Zn-based eutectoid alloy processed by friction-stir welding. J Mater Res Technol 18:3256–3265

    Article  Google Scholar 

  18. Li F, Liu Y, Ke W, Jin P, Kong H, Chen M, Sun Q (2022) A novel pathway to weld forming control and microstructure improvement of duplex stainless steel via alternating magnetic field. J Manuf Process 80:581–590

    Article  Google Scholar 

  19. Li L, Du Z, Sheng X, Zhao M, Song L, Han B, Li X (2022) Comparative analysis of GTAW+SMAW and GTAW welded joints of duplex stainless steel 2205 pipe. Int J Press Vessel Pip 199:104748

    Article  Google Scholar 

  20. Arzour FZ, Hadj Meliani M, Jabbar A, Boukharouba T (2020) Microstructure evolution in friction welding of AISI 316. Structural Integrety and Life 20(01)

  21. Samuel KG (2006) Limitations of Hollomon and Ludwigson stress-strain relations in assessing the strain hardening parameters. J Phys D Appl Phys 39:203–212

    Article  Google Scholar 

  22. Ramirez AJ, Benati DM, Fals HC (2011) Effect of tool offset on dissimilar Cu-AISI 316 stainless steel friction stir welding. In: Proceeding of the 21st International Offshore and Polar Engineering Conference, vol 8, USA, pp 548–551

  23. Chiu KY, Cheng FT, Man HC (2005) Laser cladding of austenitic stainless steel using NiTi strips for resisting cavitation erosion. Mater Sci Eng A 402(1-2):126–134

    Article  Google Scholar 

  24. Murry G, Aciers. Généralités. (1993) Techniques de l'ingénieur. Génie mécanique (M300):1–29

  25. Ben Kechroud Basma, (2014). Comparative study of four steels for pipeline for Sonatrach made at TSS Arcelormittal-Annaba according to physico chemical parameters and choice of steel X52. Master thesis- Mechanics of materials- University Badji Mokhtar Annaba-Annaba-Algeria.

  26. Hannouf B, Zeddam A (2018) Use of soft computing techniques in a non-destructive testing process” Master's thesis,. University of Jijel

    Google Scholar 

  27. Putz A, Hosseini VA, Westin EM, Enzinger N (2020) Microstructure investigation of duplex stainless steel welds using arc heat treatment technique. Weld World 64:1135–1147

    Article  Google Scholar 

  28. Cao F, Huang G, Hou W, Ni R, Sun T, Hu J, Shen Y, Gerlich AP (2022) Simultaneously enhanced strength-ductility synergy and corrosion resistance in submerged friction stir welded super duplex stainless steel joint via creating ultrafine microstructure. J Mater Process Technol 307:117660

    Article  Google Scholar 

  29. Nathalie KOPP (1999) Contribution to the characterization of butt weld defects in low alloy steel by ultrasonic non-destructive testing. University of Metz, France

    Google Scholar 

  30. French standard A 09-325 Non-destructive testing ultrasonic beam -Generalities-September-198.

  31. Kada Karim and gharabi tayab (2018) Non-destructive testing; electrical networks; Ahmed doraya University. Adrar Faculty of Science and Technology Department of Electrical Engineering

    Google Scholar 

  32. Adnene Tlilli; Sofien Marzouki; Non-destructive testing; Institut supérieur des études technologiques de Jendouba. Industrial Maintenance Department; 2005/2006; Tunisia.

  33. Raid A (2017-2018) Non-destructive testing; penetrant testing, magnetoscopy, radiography, eddy current and ultrasonics. University of Science and Technology of Oran Mohamed-Boudiaf

    Google Scholar 

  34. Sloderbach Z, Pajak J (2005) Determination of ranges of components of heat affected zone including changes of structure. Arch Metall Mater 60(4):2607–2612

    Article  Google Scholar 

  35. Beranger G, Henry G, Sanz G (1994) ≪Le livre de l'acier≫. Technique et Documentation, Lavoisier

    Google Scholar 

  36. Helal Y (2017) thesis “The effect of friction stir welding on the microstructure and mechanical properties of a welded joint composed of an industrial aluminum alloy and a steel”. Mohammed Khaider University Biskra

    Google Scholar 

  37. Gerard M (2010) thesis “Heterogeneous diffusion welding assisted by friction stirring, case of the Al/Fe couple”. Ecole Centrale de Nantes

  38. Review by Dr. Ir. Koen Faes, IBS (Translation: M.C. Ritzen), Belgian Welding Institute.

  39. REVIEW friction welding - critical assessment of literature. Maalekian, M. Graz University of Technology: sn, 09 10 2007, Institute of Materials, Minerals and Mining, pp 738-759.

  40. Jeffus L (2012) Welding: principles and applications, 7th edn. DELMAR Cengage Learning, USA

    Google Scholar 

  41. Maeder T, N'Guyen Q, Weber L (2006. LMM Laboratory - Quoted on pages 35) “Techniques d’assemblage - le soudage en phase solide”, course, Ecole Polytechnique Federale de Lausanne (EPFL). Lausane 36:39

    Google Scholar 

  42. Cazès R (1996) Soudage par friction. Techniques de l'Ingénieur B7745:37

    Google Scholar 

  43. Pichot F, Corpace F (2014) Aerospace engine design and manufacturing. SAFRAN Group (SNECMA)

    Google Scholar 

  44. Jamaludin SB, Keat YC, Ahmad ZA (2004) The effect of varying process parameters on the microhardness and microstructure of Cu-steel and Al-Al2O3 friction joints. J Teknol 41:85–95

    Google Scholar 

  45. Li W, Vairis A, Preuss M, Tiejun MA (2016) Linear and rotary friction welding review. Int Mater Rev

  46. Sathiya P, Aravindan S, Haq AN (2007) Effect of friction welding parameters on mechanical and metallurgical properties of ferritic stainless steel. Int J Adv Manuf Technol 31(11):1076–1082

    Article  Google Scholar 

  47. Uday MB, Ahmad Fauzi MN, Zuhailawati H, Ismail AB (2010) Advances in friction welding process: a review. Sci Technol Weld Join 15(7):534–558

    Article  Google Scholar 

  48. D.D. Kautz, “Fundamentals of friction welding,” ASM Handbook, Volume 6A, Welding Fundamentals and Processes, 2011.

  49. Koen Faes, (IBS): friction welding (translation: M.C. Ritzen-IBS.BIL), http://www.bil-ibs.be/fr/soudage-par-friction. (Apr. 12, 2018).

  50. Ananda Rao G, Ramanaiah N (2019) Dissimilar metals AISI 304 steel and AA 2219 aluminium alloy joining by friction welding method. Mater Today Proc 19:902–907

    Article  Google Scholar 

  51. Li W, Suo J, Ma T, Feng Y, Kim K (2014) Abnormal microstructure in the weld zone of linear friction welded Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy joint and its influence on joint properties. Mater Sci Eng A 599:38–45

    Article  Google Scholar 

  52. Tasalloti H, Kah P, Martikainen J (2017) Effect of heat input on dissimilar welds of ultra high strength steel and duplex stainless steel: microstructural and compositional analysis. Mater Charact 123:29–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

FZ.A, A.M., and M.H.M. conceived and designed the experiments; FZ.A. carried out the experiments; M.H.M and R.K.S. analyzed the experimental data and wrote the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mohammed Hadj Meliani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arzour, F.Z., Amara, M., Suleiman, R.K. et al. Thermomechanical effect on the properties of stainless steels using rotative friction welding: an experimental study on 304L and 316L grades. Int J Adv Manuf Technol 129, 3849–3861 (2023). https://doi.org/10.1007/s00170-023-12522-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12522-7

Keywords

Navigation