Skip to main content
Log in

Microstructural and mechanical evolution of ZnAlAg superplastic alloy under large deformation conditions

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The Zn22Al4Ag alloy was studied to analyze the evolution through plastic deformation and static compression test. First, the master alloy comes from pure Zn, Al, and Ag elements; later, it rolled down to twelve passes. The microstructural characteristics were analyzed by scanning electron microscopy (SEM), Scilab algorithm image processing. Finally, static compression is carried out, including the as-cast, homogenized, and tempered conditions at different loads to measure microhardness. The SEM and XRD image analysis output a 97% plasticity increase in the Zn22Al4Ag alloy due to the rearrangement of the Al, ZnAl, and ZnAg3 phases, observing a phases homogenization from the sixth to the twelfth deformation pass. This deformation allowed the softening of the material as indicated by the microhardness results, relating this behavior to the inverse of the \(Hall-Petch\) relationship with hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Not applicable

Code Availability

Not applicable

References

  1. Afifi MA, Wang YC, Cheng X, Li S, Langdon TG (2019) Strain rate dependence of compressive behavior in an Al-Zn-Mg alloy, processed by ECAP. J Alloy Compd 791:1079–1087

    Article  Google Scholar 

  2. Chinh NQ, Csanádi T, Gubicza J, Langdon TG (2010) Plastic behavior of face-centered-cubic metals over a wide range of strain. Acta Materiaia 58:5015–5021

    Article  Google Scholar 

  3. Chinh NQ, Kovács Z (2019) Unique microstructural and mechanical properties of Al-Zn alloys processed by high-pressure torsion. Mater Sci Eng 613

  4. Lui CY, Ma MZ, Liu RP, Luo K (2015) Evaluation of microstructure and mechanical properties of Al-Zn alloy during rolling. Mater Sci Eng, A 654

  5. Liu Z (2016) R Li, R Jiang, X Li, M Zhang: Effects of al addition on the structure and mechanical properties of Zn alloys. J Alloy Compd 687:885–892

    Article  Google Scholar 

  6. Demirtas M, Purcek G, Yanar H, Zhang ZJ, Zhang ZF (2016) Effect of different processes on lamellar-free ultrafine grain formation, room temperature superplasticity and fracture mode of Zn-22Al alloy. Alloys Compd 663:775–783. https://doi.org/10.1016/j.jallcom.2015.12.142

    Article  Google Scholar 

  7. Xia SH, Wang J, Wang JT, Liu JQ (2008) Improvement of room-temperature superplasticity in Zn-22 wt.%Al alloy. Mater Sci Eng, A 493:115–121

    Article  Google Scholar 

  8. Kumar P, Xu C, Langdon TG (2006) Mechanical characteristics of a Zn-22% al alloy processed to very high strains by ECAP. Mater Sci Eng, A 429:324–328

    Article  Google Scholar 

  9. Tanaka T, Makii K, Kushibe A, Higashi K (2002) Room temperature deformation behavior of Zn-22 mass%Al alloy with nanocrystalline structure. Mater Trans 43(10):2449–3454

    Article  Google Scholar 

  10. Casolco SR, Gómez JM, de Salazar JQ, Díez GT Villaseñor (2006) Colaminación de chapas de aleación zinag recubiertas de láminas de aluminio. Patente de invención 235–643

  11. Ghalehbandi SM, Fallahi Arezoodar A, Hosseini-Toudeshky H (2015) Influence of aging on mechanical properties of equal channel angular pressed aluminum alloy 7075. J Eng Manuf 1–9

  12. Cojocaru VD, Şerban N, Răducanu D, Cincă I, Şaban R (2010) Microstructural observations of fracture surfaces for a 6063–T1 ECAP processed aluminum alloy. PB Sci Bull 72(4)

  13. Fallahi A, Hosseini-Toudeshky H, Ghalehbandi SM (2013) Effect of heat treatment on mechanical properties of ECAPed 7075 aluminum alloy. Adv Mater Res 829:62–66

    Article  Google Scholar 

  14. Xia SH (2019) JTWJQL, J Wang: Room temperature superplaticity in fine/ultrafine grained materials subjected to severe plastic deformation. Mater Trans 60(7):1159–1167

    Article  Google Scholar 

  15. Tanaka T, Watanabe H, Higashi K (2003) Microstructure in Zn-Al alloys after equal-channel-angular extrusion. Mater Trans 44(9):1891–1894

    Article  Google Scholar 

  16. Prado-Lázaro JM, Ramos-Banderas JÁ, Aguilera-Navarrete I, Verduzco-Martínez JA, García-Herrera LA (2021) Relación del intermetálico e en la obtención de estructuras de grano ultrafino bajo tasas de deformación severa en zn-22%al-4%ag. Ingeniería Mecánica Tecnología y Desarrollo 7(1):09–16

    Google Scholar 

  17. Gupta N, Luong DD, Rohatgi PK (2011) A method for intermediate strain rate compression testing and study of compressive failure mechanism of Mg-Al-Zn alloy. J Appl Phys 109(10). https://doi.org/10.1063/1.3590155

  18. Vázquez-Esquivel AV, Aguilera-Navarrete I, Juárez-Campos B (2011) Method for the simulation of deformation processes by processing metallographs. In: 2021 Mexican International Conference on Computer Science (ENC). p 1–8

  19. Casolco SR, Negrete-Sánchez J, Torres-Villaseñor G (2003) Influence of silver on the mechanical properties of Zn-Al eutectoid superplastic alloy. Mater Charact 51(1):63–67. https://doi.org/10.1016/j.matchar.2003.09.011

    Article  Google Scholar 

  20. Shan Z, Liu S, Ye L, Liu X, Dong Y, Li Y, Tang J, Deng Y, Zhang X (2020) Effect of three-stage homogenization on recrystallization and fatigue crack growth of 7020 aluminum alloy. J Market Res 9(6):13216–13229. https://doi.org/10.1016/j.jmrt.2020.09.066

    Article  Google Scholar 

  21. Chinh NQ, Csanádi T, Gubicza J, Langdon TG (2010) Plastic behavior of face-centered-cubic metals over a wide range of strain. Acta Mater 58(15):5015–5021. https://doi.org/10.1016/j.actamat.2010.05.036

    Article  Google Scholar 

  22. Lázaro JM, Banderas JA, Navarrete IA, Martínez JA, Palacios RM (2021) Microlamabres de una aleación Zn-22%Al-4%Ag obtenidos mediante el proceso de solidificación rápida por tambor rotativo. DYNA Ingeniería e Idustria 97(1):53–58. https://doi.org/10.6036/10098

Download references

Acknowledgements

This work has been carried out as part of a grant provided by CONACYT CATEDRAS 3219, at TECNM I.T. Morelia. Estancias Posdoctorales por México 2022, Número de CVU: 694083

Funding

This work was supported by México, CONACYT CATEDRAS 3219 and Estancias Posdoctorales por México 2022, CVU: 694083.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Juan-Manuel Prado-Lázaro, Israel Aguilera-Navarrete, Rocío Maricela Ochoa-Palacios, Jorge Alejandro Verduzco-Martínez, and Ignacio Alejandro Figueroa-Vargas. The first draft of the manuscript was written by Juan-Manuel Prado-Lázaro, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Israel Aguilera-Navarrete.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prado-Lázaro, JM., Aguilera-Navarrete, I., Ochoa-Palacios, R.M. et al. Microstructural and mechanical evolution of ZnAlAg superplastic alloy under large deformation conditions. Int J Adv Manuf Technol 129, 3331–3339 (2023). https://doi.org/10.1007/s00170-023-12442-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12442-6

Keywords

Navigation