Skip to main content
Log in

Multi-objective optimization of energy consumption, surface roughness, and material removal rate in diamond wire sawing for monocrystalline silicon wafer

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Sustainable manufacturing is essential to minimize energy consumption and environmental footprints. In the diamond wire sawing (DWS) process, minimizing energy consumption without compensating for the surface roughness of as-sawn wafer is crucial for achieving a cost-effective and environmentally friendly process. However, the evaluation and assessment of energy consumption without compromising the surface roughness of the as-sawn wafer in the DWS process have not been thoroughly studied. This study aims to investigate the correlation between energy consumption (EC), surface roughness (Ra), and material removal rate (MRR) of DWS to effectively reduce environmental footprints and simultaneously improve the surface quality of the as-sawn wafer during a single-wire DWS process. Experiments have been conducted on monocrystalline silicon (Si), incorporating various process parameters, namely wire speed, feed rate, and wire tension, as controllable factors. A mathematical relationship between the parameters has been formulated using the response surface methodology and optimized using a multi-objective particle swarm optimization (MOPSO). Results show that the optimum parameter combination is obtained at a wire speed of 0.36 m/s, a feed rate of 0.029 mm/min, and wire tension of 7 N and has reduced energy consumption, surface roughness, and MRR of 8.53%, 2.85%, and 4.86%, respectively, when compared to the traditional sawing process based on per wafer. Results of this study can be applied on the multi-wire DWS of Si wafer processing for achieving sustainable manufacturing practices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Khan AM, Jamil M, Salonitis K et al (2019) Multi-objective optimization of energy consumption and surface quality in nanofluid SQCL assisted face milling. Energies 12(4):710. https://doi.org/10.3390/en12040710

    Article  Google Scholar 

  2. Schneider F, Das J, Kirsch B et al (2019) Sustainability in ultra precision and micro machining: a review. Int J Precis Eng Manuf-Green Technol 6(3):601–610. https://doi.org/10.1007/s40684-019-00035-2

    Article  Google Scholar 

  3. Bourhis FL, Kerbrat O, Hascoet J-Y et al (2013) Sustainable manufacturing: evaluation and modeling of environmental impacts in additive manufacturing. Int J Adv Manuf Technol 69(9):1927–1939. https://doi.org/10.1007/s00170-013-5151-2

    Article  Google Scholar 

  4. Kaya S, Aydin G, Karakurt I (2023) An experimental study on the cutting depth produced by abrasive waterjet: how do abrasive and rock properties affect the cutting process? Int J Adv Manuf Technol 125(9):4811–4823. https://doi.org/10.1007/s00170-023-11053-5

    Article  Google Scholar 

  5. Aydin G, Karakurt I, Amiri MR et al (2022) Improvement of rock cutting performance through two-pass abrasive waterjet cutting. Sustainability 14(19):12704. https://doi.org/10.3390/su141912704

    Article  Google Scholar 

  6. Celep O, Aydin G, Karakurt I (2013) Diamond recovery from waste sawblades: a preliminary investigation. Proc Inst Mech Eng, Part B: J Eng Manuf 227(6):917–921. https://doi.org/10.1177/0954405412471524

    Article  Google Scholar 

  7. Freitas Gomes IS, Perez Y, Suomalainen E (2020) Coupling small batteries and PV generation: a review. Renew Sustain Energy Rev 126:109835. https://doi.org/10.1016/j.rser.2020.109835

    Article  Google Scholar 

  8. Sahu A, Garg A, Dixit A (2020) A review on quantum dot sensitized solar cells: past, present and future towards carrier multiplication with a possibility for higher efficiency. Solar Energy 203:210–239. https://doi.org/10.1016/j.solener.2020.04.044

    Article  Google Scholar 

  9. Wu X, Tan Y, Li J et al (2020) Surface damage and metal-catalyzed chemical etching investigation of multicrystalline silicon by diamond wire sawing. Solar Energy 207:609–617. https://doi.org/10.1016/j.solener.2020.07.019

    Article  Google Scholar 

  10. Kumar A, Melkote SN (2018) Diamond wire sawing of solar silicon wafers: a sustainable manufacturing alternative to loose abrasive slurry sawing. Procedia Manuf 21:549–566. https://doi.org/10.1016/j.promfg.2018.02.156

    Article  Google Scholar 

  11. Sen B, Mia M, Krolczyk GM et al (2021) Eco-friendly cutting fluids in minimum quantity lubrication assisted machining: a review on the perception of sustainable manufacturing. Int J Precis Eng Manuf-Green Technol 8(1):249–280. https://doi.org/10.1007/s40684-019-00158-6

    Article  Google Scholar 

  12. Benedicto E, Rubio EM, Aubouy L et al (2022) Sustainable lubrication/cooling systems for efficient turning operations of γ-TiAl parts from the aeronautic industry. Int J Precis Eng Manuf-Green Technol. https://doi.org/10.1007/s40684-022-00435-x

    Article  Google Scholar 

  13. Triebe MJ, Zhao F, Sutherland JW (2022) Modelling the effect of slide table mass on machine tool energy consumption: the role of lightweighting. J Manuf Syst 62:668–680. https://doi.org/10.1016/j.jmsy.2022.02.003

    Article  Google Scholar 

  14. Selvaraj V, Xu Z, Min S (2022) Intelligent operation monitoring of an ultra-precision CNC machine tool using energy data. Int J Precis Eng Manuf-Green Technol. https://doi.org/10.1007/s40684-022-00449-5

    Article  Google Scholar 

  15. Chiang CY, Kocabasoglu-Hillmer C, Suresh N (2012) An empirical investigation of the impact of strategic sourcing and flexibility on firm’s supply chain agility. Int J Oper Prod Manag 32(1):49–78. https://doi.org/10.1108/01443571211195736

    Article  Google Scholar 

  16. Abdul-Rashid SH, Mohamad MN, Sakundarini N et al (2022) Modelling sustainable manufacturing practices effects on sustainable performance: the contingent role of ownership. Int J Adv Manuf Techno 122(9):3997–4012. https://doi.org/10.1007/s00170-022-10140-3

    Article  Google Scholar 

  17. Newman ST, Nassehi A, Imani-Asrai R et al (2012) Energy efficient process planning for CNC machining. CIRP J Manuf Sci Technol 5(2):127–136. https://doi.org/10.1016/j.cirpj.2012.03.007

    Article  Google Scholar 

  18. Mymrin V, Praxedes PB, Alekseev K et al (2019) Manufacturing of sustainable ceramics with improved mechanical properties from hazardous car paint waste to prevent environment pollution. Int J Adv Manuf Technol 105(5):2357–2367. https://doi.org/10.1007/s00170-019-04302-z

    Article  Google Scholar 

  19. Pei ZJ (2002) A study on surface grinding of 300 mm silicon wafers. Int J Mach Tools Manuf 42(3):385–393. https://doi.org/10.1016/S0890-6955(01)00122-5

    Article  Google Scholar 

  20. Möller HJ (2004) Basic mechanisms and models of multi-wire sawing. Adv Eng Mater 6(7):501–513. https://doi.org/10.1002/adem.200400578

    Article  Google Scholar 

  21. Tsai Y-Y, Ho J-K, Wang W-H et al (2020) Grey-Taguchi-based optimization of wire-sawing for a slicing ceramic. Processes 8(12):1602. https://doi.org/10.3390/pr8121602

    Article  Google Scholar 

  22. Li X, Gao Y, Yin Y et al (2020) Experiment and theoretical prediction for surface roughness of PV polycrystalline silicon wafer in electroplated diamond wire sawing. J Manuf Process 49:82–93. https://doi.org/10.1016/j.jmapro.2019.11.022

    Article  Google Scholar 

  23. Costa EC, Weingaertner WL, Xavier FA (2022) Influence of single diamond wire sawing of photovoltaic monocrystalline silicon on the feed force, surface roughness and micro-crack depth. Mater Sci Semicond Process 143:106525. https://doi.org/10.1016/j.mssp.2022.106525

    Article  Google Scholar 

  24. Gupta A, Chen C-CA, Hsu H-W (2019) Study on diamond wire wear, surface quality, and subsurface damage during multi-wire slicing of c-plane sapphire wafer. Int J Adv Manuf Technol 100(5):1801–1814. https://doi.org/10.1007/s00170-018-2656-8

    Article  Google Scholar 

  25. Yin Y, Gao Y, Wang L et al (2021) Analysis of crack-free surface generation of photovoltaic polysilicon wafer cut by diamond wire saw. Solar Energy 216:245–258. https://doi.org/10.1016/j.solener.2021.01.009

    Article  Google Scholar 

  26. Kumar A, Kaminski S, Melkote SN et al (2016) Effect of wear of diamond wire on surface morphology, roughness and subsurface damage of silicon wafers. Wear 364–365:163–168. https://doi.org/10.1016/j.wear.2016.07.009

    Article  Google Scholar 

  27. Würzner S, Falke A, Buchwald R et al (2015) Determination of the impact of the wire velocity on the surface damage of diamond wire sawn silicon wafers. Energy Procedia 77:881–890. https://doi.org/10.1016/j.egypro.2015.07.124

    Article  Google Scholar 

  28. Gao YF, Ge PQ (2010) Experimental investigation on Brittle-ductile transition in electroplated diamond wire saw machining single crystal silicon, in Key Engineering Materials: Trans Tech Publ, 431, pp. 265–268. https://doi.org/10.4028/www.scientific.net/KEM.431-432.265

  29. Hardin CW, Qu J, Shih AJ (2004) Fixed abrasive diamond wire saw slicing of single-crystal silicon carbide wafers. Mater Manuf Process 19(2):355–367. https://doi.org/10.1081/AMP-120029960

    Article  Google Scholar 

  30. Wang L, Gao Y, Li X et al (2020) Analytical prediction of subsurface microcrack damage depth in diamond wire sawing silicon crystal. Mater Sci Semicond Process 112:105015. https://doi.org/10.1016/j.mssp.2020.105015

    Article  Google Scholar 

  31. Costa EC, Xavier FA, Knoblauch R et al (2020) Effect of cutting parameters on surface integrity of monocrystalline silicon sawn with an endless diamond wire saw. Solar Energy 207:640–650. https://doi.org/10.1016/j.solener.2020.07.018

    Article  Google Scholar 

  32. Chen CCA, Cheng SC, Chan MH et al (2014) Design and test of a rapid thermal annealing furnace for improving surface properties of silicon brick in multi-wire sawing process. Adv Mater Res 939:437–442. https://doi.org/10.4028/www.scientific.net/AMR.939.437

    Article  Google Scholar 

  33. Suzuki T, Nishino Y, Yan J (2017) Mechanisms of material removal and subsurface damage in fixed-abrasive diamond wire slicing of single-crystalline silicon. Precis Eng 50:32–43. https://doi.org/10.1016/j.precisioneng.2017.04.011

    Article  Google Scholar 

  34. Wang Y, Zhao B, Huang S et al (2021) Study on the subsurface damage depth of monocrystalline silicon in ultrasonic vibration assisted diamond wire sawing. Eng Fract Mech 258:108077. https://doi.org/10.1016/j.engfracmech.2021.108077

    Article  Google Scholar 

  35. Kovalchenko A, Pashchenko E, Savchenko D (2021) Research on suppressing brittle fracture and implementing ductile mode cutting for improving surface quality at silicon wafers manufacturing. J Phys: Conference Series 2045(1):012005. https://doi.org/10.1088/1742-6596/2045/1/012005. (IOP Publishing)

    Article  Google Scholar 

  36. Xiao H, Wang H, Yu N et al (2019) Evaluation of fixed abrasive diamond wire sawing induced subsurface damage of solar silicon wafers. J Mater Process Technol 273:116267. https://doi.org/10.1016/j.jmatprotec.2019.116267

    Article  Google Scholar 

  37. Xu Z, Feng Y, Pan L et al (2020) Influence of ingot rocking on the surface quality of multi-wire sawing monocrystalline silicon wafers. Int J Adv Manuf Technol 107(1):15–24. https://doi.org/10.1007/s00170-020-04996-6

    Article  Google Scholar 

  38. Gao Y, Ge P, Zhang L et al (2019) Material removal and surface generation mechanisms in diamond wire sawing of silicon crystal. Mater Sci Semicond Process 103:104642. https://doi.org/10.1016/j.mssp.2019.104642

    Article  Google Scholar 

  39. Güney T (2021) Renewable energy consumption and sustainable development in high-income countries. Int J Sustain Dev World Ecol 28(4):376–385. https://doi.org/10.1080/13504509.2020.1839807

    Article  Google Scholar 

  40. Rödger J-M, Beier J, Schönemann M et al (2021) Combining life cycle assessment and manufacturing system simulation: evaluating dynamic impacts from renewable energy supply on product-specific environmental footprints. Int J Precis Eng Manuf -Green Technol 8(3):1007–1026. https://doi.org/10.1007/s40684-020-00229-z

    Article  Google Scholar 

  41. Chen CCA, Chao PH (2010) Surface texture analysis of fixed and free abrasive machining of silicon substrates for solar cells. Adv Mater Res 126:177–180. https://doi.org/10.4028/www.scientific.net/AMR.126-128.177. (Trans Tech Publ)

    Article  Google Scholar 

  42. Li L, Ren X, Feng H et al (2021) A novel material removal rate model based on single grain force for robotic belt grinding. J Manuf Process 68:1–12. https://doi.org/10.1016/j.jmapro.2021.05.029

    Article  Google Scholar 

  43. Klocke F, Kuchle A (2009) Manufacturing processes (vol 2, pp. p–433). Berlin: Springer

  44. Malkin S, Guo C (2008) Grinding technology: theory and application of machining with abrasives. Industrial Press Inc

  45. Khoshaim AB, Xu Z, Marinescu ID (2015) Chapter 9 - ELID Grinding with Lapping Kinematics. In: Marinescu ID, Doi TK, Uhlmann E (eds) Handbook of Ceramics Grinding and Polishing. William Andrew Publishing, Boston, pp 394–448

    Chapter  Google Scholar 

  46. Hanafi I, Cabrera FM, Dimane F et al (2016) Application of particle swarm optimization for optimizing the process parameters in turning of PEEK CF30 composites. Procedia Technol 22:195–202. https://doi.org/10.1016/j.protcy.2016.01.044

    Article  Google Scholar 

  47. Malghan RL, Rao KMC, Shettigar AK et al (2017) Application of particle swarm optimization and response surface methodology for machining parameters optimization of aluminium matrix composites in milling operation. J Braz Soc Mech Sci Eng 39(9):3541–3553. https://doi.org/10.1007/s40430-016-0675-7

    Article  Google Scholar 

  48. Rushing H, Karl A, Wisnowski J (2014) Design and analysis of experiments by Douglas Montgomery: a supplement for using JMP. SAS Institute Inc., Cary, North Carolina, USA

  49. Han F, Li L, Cai W et al (2020) Parameters optimization considering the trade-off between cutting power and MRR based on linear decreasing particle swarm algorithm in milling. J Clean Prod 262:121388. https://doi.org/10.1016/j.jclepro.2020.121388

    Article  Google Scholar 

  50. Dileep G, Singh SN (2017) An improved particle swarm optimization based maximum power point tracking algorithm for PV system operating under partial shading conditions. Solar Energy 158:1006–1015. https://doi.org/10.1016/j.solener.2017.10.027

    Article  Google Scholar 

  51. Khare A, Rangnekar S (2013) A review of particle swarm optimization and its applications in solar photovoltaic system. Appl Soft Comput 13(5):2997–3006. https://doi.org/10.1016/j.asoc.2012.11.033

    Article  Google Scholar 

  52. Mirjalili S, Lewis A (2013) S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol Comput 9:1–14. https://doi.org/10.1016/j.swevo.2012.09.002

    Article  Google Scholar 

  53. Zhan Z-H, Zhang J, Li Y et al (2010) Orthogonal learning particle swarm optimization. IEEE Trans Evol Comput 15(6):832–847. https://doi.org/10.1109/TEVC.2010.2052054

    Article  Google Scholar 

  54. ShyhChyan G, Ponnambalam SG (2012) Obstacle avoidance control of redundant robots using variants of particle swarm optimization. Robot Compu-Integr Manuf 28(2):147–153. https://doi.org/10.1016/j.rcim.2011.08.001

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the financial support of the National Science and Technology Council (NSTC)/Ministry of Science and Technology (MOST) under grant number (NSTC/MOST 111–2221-E-011–103). We also thank the Green Energy and Environment Research Laboratories (GEL) at the Industrial Technology Research Institute (ITRI) in Taiwan for their support and assistance with the digital power meters.

Author information

Authors and Affiliations

Authors

Contributions

EMS: conceptualization, methodology, investigation, data curation, formal analysis, software, validation, writing—original draft, and writing—review and editing. C-CAC: conceptualization, visualization, validation, writing—review and editing, resources, funding acquisition, and principal supervision. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Chao-Chang Arthur Chen.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All the authors participated in this research.

Consent for publication

All the authors approved the final manuscript for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sefene, E.M., Chen, CC.A. Multi-objective optimization of energy consumption, surface roughness, and material removal rate in diamond wire sawing for monocrystalline silicon wafer. Int J Adv Manuf Technol 129, 2563–2576 (2023). https://doi.org/10.1007/s00170-023-12335-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12335-8

Keywords

Navigation