Skip to main content

Advertisement

Log in

Critical depth of cut modeling and ductility domain removal mechanism in elliptical vibration-assisted cutting BK7 optical glass

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Elliptical vibration-assisted cutting (EVC) technology is widely used to process hard and brittle materials such as optical glass. However, applying optical glass is severely inhibited by the subsurface damage caused during processing. To solve this problem, this paper studies the surface formation of BK7 optical glass processed by EVC. The removal mechanism of BK7 in EVC ductile processing was analyzed. A critical undeformed cut depth prediction model for EVC processing BK7 was established. The EVC marking experiment of BK7 is carried out. The optimization principle of BK7 processing parameters is summarized. The results show that when the maximum cutting depth is less than or equal to the critical undeformed cutting depth, or greater than the critical undeformed cutting depth, but the set critical parameter △ is less than 0, the processed surface of BK7 optical glass can achieve efficient ductility formation. The critical undeformed cutting depth decreases with the increase of cutting speed and increases with the increase of vibration frequency. By comparing the experimental results with the predicted results, the average error of the two is only 12%, which verifies the model’s accuracy. To ensure the cutting efficiency and stability of the cutting system, selecting a small cutting speed and large vibration frequency is conducive to the ductile machining of BK7 using EVC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yu SM, Zhu JH, Yao P, Huang CZ (2021) Profile error compensation in precision grinding of ellipsoid optical surface. Chinese J Aeronaut 34(04):115–123. https://doi.org/10.1016/j.cja.2020.08.042

    Article  Google Scholar 

  2. Jiang X W, Long X W, Tan Z Q (2021) A review of material removal mechanism in ultra-precision of optical glass. Chinese Laser Press 48(04): 236–253. https://doi.org/10.3788/CJL202148.0401014

  3. Zhang TQ, Guan Z, Zhang C, Xi WC, Yu B, Zhao J (2021) Predictive modeling and experimental study of generated surface-profile for ultrasonic vibration-assisted polishing of optical glass BK7 in straight feeding process. Ceram Int 47(14):19809–19823. https://doi.org/10.1016/j.ceramint.2021.03.320

    Article  CAS  Google Scholar 

  4. Lv DX, Chen G, Zhao DG, Gao C, Xu HB, Guo QT, Zhu YD (2021) Formation mechanism of exit chipping in drilling hard-brittle material. Optics Precis Eng 29(01):110–116. https://doi.org/10.37188/OPE.20212901.0110

    Article  Google Scholar 

  5. Lu MM, Zhou JK, Lin JQ, Gu Y, Han JG, Zhao DP (2017) Study on Ti-6Al-4V alloy machining applying the non-resonant three-dimensional elliptical vibration cutting. Micromachines 8(10):306. https://doi.org/10.3390/mi8100306

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lu MM, Wang H, Guan L, Lin JQ, Gu Y, Chen B, Zhao DP (2018) Modelling and analysis of surface topography of Ti6Al4V alloy machining by elliptical vibration cutting. Int J Adv Manuf Tech 98(9–12) : 2759–2768. https://link.springer.com/article/https://doi.org/10.1007/s00170-018-2452-5

  7. Zhu ZW, To S, Xiao GB, Ehmann K, Zhang GQ (2016) Rotary spatial vibration-assisted diamond cutting of brittle materials. Precis Eng 44:211–219. https://doi.org/10.1016/j.precisioneng.2015.12.007

    Article  Google Scholar 

  8. Ma CX, Wang Y (2005) Influence of ultrasonic vibration diamond tool on critical cutting depth of brittle material. Journal of Mechanical Engineering 41(6): 198–202. https://doi.org/10.3901/JME.2005.06.198

  9. Suzuki N, Yan ZM, Hino R, Shamoto E, Hirahara Y, Imasuda T (2006) Ultraprecision micro-machining of single crystal germanium by applying elliptical vibratlon cutting. IEEE Int Symp Micro Nano Mech Hum Sci 2006:5–8. https://doi.org/10.1109/MHS.2006.320323

    Article  Google Scholar 

  10. Chen W, Zhang X (2022) Investigation on the cutting mechanism of SiCp/Al composites in ultrasonic elliptical vibration machining. Int J Adv Manuf Tech 120(7–8):4707–4722. https://doi.org/10.1007/s00170-022-08926-6

    Article  Google Scholar 

  11. Tong JL, Wei G (2019) Characteristics of cutting force during titanium alloy processed with UEVC. J Vib Shock 38(09):208–215. https://doi.org/10.13465/j.cnki.jvs.2019.09.027

    Article  Google Scholar 

  12. Atitallah A, Bedoui S, Abderrahim K (2018) System identification: parameter and time-delay estimation for wiener nonlinear systems with delayed input. T I Meas Control 40(3):1035–1045. https://doi.org/10.1177/014233121667477

    Article  Google Scholar 

  13. Liu MM, Xiao YS, Ding RF (2013) Iterative identification algorithm for wiener nonlinear systems using the Newton method. Appl Math Model 37(9):6584–6591. https://doi.org/10.1016/j.apm.2013.01.025

    Article  MathSciNet  Google Scholar 

  14. Arrazola PJ, Özel T (2010) Investigations on the effects of friction modeling in finite element simulation of machining. Int J Mech Sci 52(1):31–42. https://doi.org/10.1016/j.ijmecsci.2009.10.001

    Article  Google Scholar 

  15. Qi HS, Mills B (2003) Modelling of the dynamic tool–chip interface in metal cutting. J Mater Process Technol 138(1–3):201–207. https://doi.org/10.1016/S0924-0136(03)00072-4

    Article  CAS  Google Scholar 

  16. Kurniawan R, Ko TJ (2014) A new tool holder design with two-dimensional motion for fabricating micro-dimple and groove patterns. Int J Precis Eng Man 15(6):1165–1171. https://doi.org/10.1007/s12541-014-0452-4

    Article  Google Scholar 

  17. Lin JQ, Wang C, Lu MM, Zhou JK, Zhao SX, Liu YY (2021) Modeling and investigation of cutting force for SiCp/Al composites during ultrasonic vibration-assisted turning. P I Mech Eng E-J Pro 236(3):095440892110607. https://doi.org/10.1177/0954408921106072

    Article  Google Scholar 

  18. Zhou JK, Lu MM, Lin JQ, Du YS (2021) Elliptic vibration assisted cutting of metal matrix composite reinforced by silicon carbide: an investigation of machining mechanisms and surface integrity. J Mater Res Technol 15:1115–1129. https://doi.org/10.1016/j.jmrt.2021.08.096

    Article  CAS  Google Scholar 

  19. Bahi S, Nouari M, Moufki A, Mansori ME, Molinari A (2012) Hybrid modelling of sliding–sticking zones at the tool–chip interface under dry machining and tool wear analysis. Wear 286:45–54. https://doi.org/10.1016/j.wear.2011.05.001

    Article  CAS  Google Scholar 

  20. Ozlu E, Molinari A, Budak E (2010) Two-zone analytical contact model applied to orthogonal cutting. Mach Sci Technol 14(3):323–343. https://doi.org/10.1080/10910344.2010.512794

    Article  Google Scholar 

  21. Lu MM, Chen B, Lin JQ, Zhao DP, Zhou JK, Allen Y, Zhu ZM (2020) Friction modeling of tool-chip interface based on shear-slip theory for vibration assisted swing cutting. J Manuf Processes 55(7):240–248. https://doi.org/10.1016/j.jmapro.2020.03.052

    Article  Google Scholar 

  22. Du YS, Lu MM, Wang H, Zhou JK, Lin JQ (2021) Parameter tuning of robust adaptive fuzzy controller for 3D elliptical vibration assisted cutting. Mech Sci 12:433–442. https://doi.org/10.5194/ms-12-433-2021

    Article  Google Scholar 

  23. Jung HJ, Hayasaka T, Shamoto E (2016) Mechanism and suppression of frictional chatter in high-efficiency elliptical vibration cutting. CIRP Ann-Manuf Techn 35(1):369–372. https://doi.org/10.1016/j.cirp.2016.04.103

    Article  Google Scholar 

  24. Ankit S, Mohit K, Amrinder SU, Atul B, Vikas D (2022) Machining of hard and brittle materials: a comprehensive review. Mater Today: Proc 50(5):1048–1052. https://doi.org/10.1016/j.matpr.2021.07.452

    Article  CAS  Google Scholar 

  25. Lin B, Li SP, Cao ZC, Zhang YF, Jiang XM (2021) Theoretical modeling and experimental analysis of single-grain scratching mechanism of fused quartz glass. J Mater Process Tech 293:117090. https://doi.org/10.1016/j.jmatprotec.2021.117090

    Article  CAS  Google Scholar 

  26. Lu SX, Yang XX, Zhang JQ, Zhou C, Yin JF, Zhang B (2022) Rational discussion on material removal mechanisms and machining damage of hard and brittle materials. J Mech Eng 58(15):31–45. https://doi.org/10.3901/JME.2022.15.031

  27. Yang M, Li CH, Zhang YB, Jia DZ, Hou YL, Cao HJ (2019) Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics. Int J Adv Manuf Tech 102(5–8):2617–2632. https://doi.org/10.1007/s00170-019-03367-0

    Article  Google Scholar 

  28. Liu MZ, Li CH, Zhang YB, Yang M, Gao T, Cui X, Wang XM, Li HA, Said Z, Li RZ, Sharma S (2023) Analysis of grain tribology and improved grinding temperature model based on discrete heat source. Tribol Int 180:108196. https://doi.org/10.1016/j.triboint.2022.108196

    Article  Google Scholar 

  29. Yang M, Li CH, Zhang YB, Jia DZ, Li RZ, Hou YL, Cao HJ, Wang J (2019) Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceram Int 45(12):14908–14920. https://doi.org/10.1016/j.ceramint.2019.04.226

    Article  CAS  Google Scholar 

  30. Bifano TG, Dow TA, Scattergood RO (1991) Ductile-regime grinding: a new technology for machining brittle materials. Journal of Engineering for Industry 113:184–189. https://doi.org/10.1115/1.2899676

    Article  Google Scholar 

  31. Liu MZ, Li CH, Zhang YB, Yang M, Gao T, Cui X, Wang XM, Xu WH, Zhou ZM, Liu B, Said Z, Li RZ, Sharma S (2023) Analysis of grinding mechanics and improved grinding force model based on randomized grain geometric characteristics. Chinese J Aeronaut 36(7):160–193. https://doi.org/10.1016/j.cja.2022.11.005

    Article  Google Scholar 

  32. Zhang Y, Li CH, Ji HJ, Yang XH, Yang M, Jia DZ, Zhang XP, Li RZ, Wang J (2017) Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. Int J Mach Tool Manu 122:81–97. https://doi.org/10.1016/j.ijmachtools.2017.06.002

    Article  Google Scholar 

  33. Chen MJ, Zhao QL, Dong S (2005) The critical conditions of brittle–ductile transition and the factors influencing the surface quality of brittle materials in ultra-precision grinding. J Mater Process Tech 168:75–82. https://doi.org/10.1016/j.jmatprotec.2004.11.002

    Article  CAS  Google Scholar 

  34. Yang M, Li CH, Said Z, Zhang YB, Li RZ, Debnath S, Ali HM, Gao T, Long YZ (2021) Semi empirical heat flux model of hard-brittle bone material in ductile microgrinding. J Manuf Process 71:501–514. https://doi.org/10.1016/j.jmapro.2021.09.053

    Article  Google Scholar 

  35. Wang B, Liu ZQ, Su GS, Song QH, Ai X (2015) Investigations of critical cutting speed and ductile-to-brittle transition mechanism for workpiece material in ultra-high speed machining. Int J Mech Sci 104:44–59. https://doi.org/10.1016/j.ijmecsci.2015.10.004

    Article  Google Scholar 

  36. Yan YY, Zhang YF, Zhang ZS (2021) Surface and subsurface damage mechanisms in tangential ultrasonic-assisted grinding of ZrO2 ceramics. Act Aeronaut Astronaut Sinica 42(07):57–68. https://doi.org/10.7527/S1000-6893.2020.24749

    Article  Google Scholar 

  37. Yang M, Li CH, Zhang YB, Jia DZ, Zhang XP, Hou YL, Li RZ, Wang J (2017) Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. Int J Mach Tool Manu 122:55–65. https://doi.org/10.1016/j.ijmachtools.2017.06.003

    Article  Google Scholar 

  38. Chen JZ, Lu MM, Lin JQ, Zhou JK, Fu XF, Zhou XQ (2021) Non-resonant 3D elliptical vibration cutting induced submicron grating coloring. Int J Precis Eng Man 22:659–669. https://doi.org/10.1007/s12541-021-00470-9

    Article  Google Scholar 

  39. Lu D, Wang Q, Wu YB, Cao JG, Guo HR (2015) Fundamental turning characteristics of Inconel 718 by applying ultrasonic elliptical vibration on the base plane. Mater Manuf Process 30(8):1010–1017. https://doi.org/10.1080/10426914.2014.973588

    Article  CAS  Google Scholar 

  40. Du YS, Lu MM, Lin JQ, Yang YK (2022) Experimental and simulation study of ultrasonic elliptical vibration cutting SiCp/Al composites: chip formation and surface integrity study. J Mater Res Technol 22:1595–1609. https://doi.org/10.1016/j.jmrt.2022.12.008

    Article  CAS  Google Scholar 

  41. Antwi EK, Liu K, Wang H (2018) A review on ductile mode cutting of brittle materials. Front Mech Eng 13:251–263. https://doi.org/10.1007/s11465-018-0504-z

    Article  Google Scholar 

  42. An R, Wang YW, Fu Q, Tan Y, Cheng HW, Cheng XW, Wang FC (2023) Study on parameter acquisition and optimization methods of JH-2 constitutive model for ceramic. Int J Impact Eng 172:104424. https://doi.org/10.1016/j.ijimpeng.2022.104424

    Article  Google Scholar 

  43. Hervas I, Montagne A, Van GA, Bentoumi M, Thuault A, Iost A (2016) Fracture toughness of glasses and hydroxyapatite: a comparative study of 7 methods by using Vickers indenter. Ceram Int 42(11):12740–12750. https://doi.org/10.1016/j.ceramint.2016.05.030

    Article  CAS  Google Scholar 

  44. Canneto JJ, Cattani LM, Durual S, Wiskott A, Scherrer S (2016) Grinding damage assessment on four high-strength ceramics. Dent Mater 32(2):171–182. https://doi.org/10.1016/j.dental.2015.11.028

    Article  CAS  PubMed  Google Scholar 

  45. Zhang J, Suzuki N, Wang YL, Shamoto E (2014) Fundamental investigation of ultra-precision ductile machining of tungsten carbide by applying elliptical vibration cutting with single crystal diamond. J Mater Process Tech 214(11):2644–2659. https://doi.org/10.1016/j.jmatprotec.2014.05.024

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Jilin Province (YDZJ202201ZYTS534), Jilin Provincial International Cooperation Key Laboratory for High-Performance Manufacturing and Testing (20220502003GH), and Jilin Provincial Department of Education Research Project (JJKH20230751KJ).

Author information

Authors and Affiliations

Authors

Contributions

Mingming Lu: investigation and methodology. Yakun Yang: literature collection and summary and data curation. Yuhang Ma: specific experimental operation. Jieqiong Lin: conceptualization, funding acquisition, and supervision. Yongsheng Du: writing—review and editing.

Corresponding author

Correspondence to Jieqiong Lin.

Ethics declarations

Competing interests

The authors declare no competing interests,

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Yang, Y., Ma, Y. et al. Critical depth of cut modeling and ductility domain removal mechanism in elliptical vibration-assisted cutting BK7 optical glass. Int J Adv Manuf Technol 131, 2759–2770 (2024). https://doi.org/10.1007/s00170-023-12293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12293-1

Keywords

Navigation