Skip to main content
Log in

Tribological and machining characteristics of milling SiCp/Al MMC composites under sustainable cooling conditions

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

SiC particle-based aluminum matrix (SiCp/Al 20%) is characterized by poor surface quality, high cutting forces, and accelerated tool wear during machining. Environmentally friendly cooling/lubrication (CO2 snow, MQL) can advance the machinability of such composites even at high material removal rates. In this experimental study, milling of SiCp/Al was performed by implementing MQL and CO2 at different cutting speeds and feed per tooth and compared the effect of these lubri-cooling against dry cutting. The experimental results showed the minimum cutting forces, surface roughness, and tool life under MQL followed by CO2 and dry cutting. The microscopic analysis depicted adhesion and abrasion as prevalent wear mechanisms. The EDS analysis (line, point, mapping) revealed relatively less adhesion of aluminum (Al) and silicon (Si) chemical elements under cryogenic compared to dry cutting on tool major cutting edge. Besides, the chip analysis under MQL machining showed discontinuous and serrated-type chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen J-P, Gu L, He G-J (2020) A review on conventional and nonconventional machining of SiC particle-reinforced aluminium matrix composites. Adv Manuf 8:279–315. https://doi.org/10.1007/s40436-020-00313-2

    Article  Google Scholar 

  2. Umer U, Abidi MH, Qudeiri JA, Alkhalefah H, Kishawy H (2020) Tool performance optimization while machining aluminium-based metal matrix composite. Metals (Basel) 10:835. https://doi.org/10.3390/met10060835

    Article  Google Scholar 

  3. Li J, Laghari RA (2019) A review on machining and optimization of particle-reinforced metal matrix composites. Int J Adv Manuf Technol 100:2929–2943. https://doi.org/10.1007/s00170-018-2837-5

    Article  Google Scholar 

  4. Liang J, Sun J, Wei W, Laghari RA (2018) Dynamic constitutive analysis of aluminum alloy materials commonly used in railway vehicles big data and its application in LS-DYNA. ICST Trans Scalable Inf Syst 9(34):e8. https://doi.org/10.4108/eai.28-9-2021.171169

  5. Şap S, Uzun M, Usca ÜA, Pimenov DY, Giasin K, Wojciechowski S (2021) Investigation on microstructure, mechanical, and tribological performance of Cu base hybrid composite materials. J Mater Res Technol 15:6990–7003. https://doi.org/10.1016/j.jmrt.2021.11.114

    Article  Google Scholar 

  6. El-Kady O, Fathy A (2014) Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites. Mater Des 54:348–353. https://doi.org/10.1016/j.matdes.2013.08.049

    Article  Google Scholar 

  7. Şap E (2021) Investigation of mechanical properties of Cu/Mo-SiCp composites produced with P/M, and their wear behaviour with the Taguchi method. Ceram Int 47:25910–25920. https://doi.org/10.1016/j.ceramint.2021.05.322

    Article  Google Scholar 

  8. Shin YC, Dandekar C (2012) Mechanics and modeling of chip formation in machining of MMC. Springer London; https://doi.org/10.1007/978-0-85729-938-3_1

  9. Wan M, Li SE, Yuan H, Zhang WH (2019) Cutting force modelling in machining of fiber-reinforced polymer matrix composites (PMCs): a review. Compos Part A Appl Sci Manuf 117:34–55. https://doi.org/10.1016/j.compositesa.2018.11.003

    Article  Google Scholar 

  10. Şap S, Turgut A, Uzun M (2021) Investigation of microstructure and mechanical properties of Cu/Ti–B–SiCp hybrid composites. Ceram Int 47:29919–29929. https://doi.org/10.1016/j.ceramint.2021.07.165

    Article  Google Scholar 

  11. Pérez H, Vizán A, Hernandez JC, Guzmán M (2007) Estimation of cutting forces in micromilling through the determination of specific cutting pressures. J Mater Process Technol 190:18–22. https://doi.org/10.1016/j.jmatprotec.2007.03.118

    Article  Google Scholar 

  12. Laghari Rashid Ali, Munish MK, Li J (2021) Evolutionary algorithm for the prediction and optimization of SiCp/Al metal matrix composite machining. J Prod Syst Manuf Sci 2(1):59–69

    Google Scholar 

  13. Shoba C, Ramanaiah N, Nageswara RD (2015) Effect of reinforcement on the cutting forces while machining metal matrix composites–an experimental approach. Eng Sci Technol an Int J 18:658–663. https://doi.org/10.1016/j.jestch.2015.03.013

    Article  Google Scholar 

  14. Li HZ, Zeng H, Chen XQ (2006) An experimental study of tool wear and cutting force variation in the end milling of Inconel 718 with coated carbide inserts. J Mater Process Technol 180:296–304. https://doi.org/10.1016/j.jmatprotec.2006.07.009

    Article  Google Scholar 

  15. Kannan S, Kishawy HA (2008) Effect of tool wear progression on cutting forces and surface quality during cutting metal matrix composites. Int J Mach Mach Mater 3:241. https://doi.org/10.1504/IJMMM.2008.020961

    Article  Google Scholar 

  16. Paulo Davim J, Monteiro BA (2000) Relationship between cutting force and PCD cutting tool wear in machining silicon carbide reinforced aluminum. J Mater Process Technol 103:417–423. https://doi.org/10.1016/S0924-0136(00)00495-7

    Article  Google Scholar 

  17. Hooper R, Henshall J, Klopfer A (1999) The wear of polycrystalline diamond tools used in the cutting of metal matrix composites. Int J Refract Met Hard Mater 17:103–109. https://doi.org/10.1016/S0263-4368(98)00040-7

    Article  Google Scholar 

  18. Dabade UA, Joshi SS (2009) Analysis of chip formation mechanism in machining of Al/SiCp metal matrix composites. J Mater Process Technol 209:4704–4710. https://doi.org/10.1016/j.jmatprotec.2008.10.057

    Article  Google Scholar 

  19. Dabade UA, Sonawane HA, Joshi SS (2010) Cutting forces and surface roughness in machining Al/SiCp composites of varying composition. Mach Sci Technol 14:258–279. https://doi.org/10.1080/10910344.2010.500950

    Article  Google Scholar 

  20. Gill SK, Gupta M, Satsangi PS (2013) Prediction of cutting forces in machining of unidirectional glass fiber reinforced plastics composite. Front Mech Eng 8:187–200. https://doi.org/10.1007/s11465-013-0262-x

    Article  Google Scholar 

  21. Turgut Y, Çinici H, Şahin I, Fındık TA (2011) Study of cutting force and surface roughness in milling of Al/Sic metal matrix composites. Sci Res Essays 6:2056–62. https://doi.org/10.5897/SRE10.496

    Article  Google Scholar 

  22. Kanca E, Günen A (2016) Investigations on machinability of Al2O3 reinforced Al6061 metal matrix composites. SDÜ Fen Bilim Enstitüsü Derg 20:434. https://doi.org/10.19113/sdufbed.72984

    Article  Google Scholar 

  23. Şap S, Uzun M, Usca ÜA, Pimenov DY, Giasin K, Wojciechowski S (2022) Investigation of machinability of Ti–B-SiCp reinforced Cu hybrid composites in dry turning. J Mater Res Technol 18:1474–1487. https://doi.org/10.1016/j.jmrt.2022.03.049

    Article  Google Scholar 

  24. Isakson S, Sadik MI, Malakizadi A, Krajnik P (2018) Effect of cryogenic cooling and tool wear on surface integrity of turned Ti-6Al-4V. Procedia CIRP. https://doi.org/10.1016/j.procir.2018.05.061

    Article  Google Scholar 

  25. Iqbal A, Al-Ghamdi KA, Hussain G (2016) Effects of tool life criterion on sustainability of milling. J Clean Prod 139:1105–1117. https://doi.org/10.1016/j.jclepro.2016.08.162

    Article  Google Scholar 

  26. Sartori S, Ghiotti A, Bruschi S (2017) Hybrid lubricating/cooling strategies to reduce the tool wear in finishing turning of difficult-to-cut alloys. Wear 376–377:107–114. https://doi.org/10.1016/j.wear.2016.12.047

    Article  Google Scholar 

  27. Aslantas K, Çiçek A (2018) The effects of cooling/lubrication techniques on cutting performance in micro-milling of Inconel 718 superalloy. Procedia CIRP 77:70–73

    Article  Google Scholar 

  28. An Q, Cai C, Zou F, Liang X, Chen M (2020) Tool wear and machined surface characteristics in side milling Ti6Al4V under dry and supercritical CO2 with MQL conditions. Tribol Int 151:106511. https://doi.org/10.1016/j.triboint.2020.106511

    Article  Google Scholar 

  29. Sharma AK, Tiwari AK, Dixit AR (2016) Effects of minimum quantity lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A review. J Clean Prod. https://doi.org/10.1016/j.jclepro.2016.03.146

    Article  Google Scholar 

  30. Balan ASS, Vijayaraghavan L, Krishnamurthy R, Kuppan P, Oyyaravelu R (2016) An experimental assessment on the performance of different lubrication techniques in grinding of Inconel 751. J Adv Res 7:709–718. https://doi.org/10.1016/j.jare.2016.08.002

    Article  Google Scholar 

  31. Sakkaki M, Sadegh Moghanlou F, Vajdi M, Pishgar F, Shokouhimehr M, Shahedi AM (2019) The effect of thermal contact resistance on the temperature distribution in a WC made cutting tool. Ceram Int 45:22196–22202. https://doi.org/10.1016/j.ceramint.2019.07.241

    Article  Google Scholar 

  32. Astakhov VP (2004) The assessment of cutting tool wear. Int J Mach Tools Manuf 44:637–647. https://doi.org/10.1016/j.ijmachtools.2003.11.006

    Article  Google Scholar 

  33. Ali Laghari R, Li J, Laghari AA, Mia M, Wang S, Aibo W et al (2019) Carbide tool life prediction and modeling in SiCp/Al turning process via artificial neural network approach. IOP Conf Ser Mater Sci Eng 600:012022. https://doi.org/10.1088/1757-899X/600/1/012022

    Article  Google Scholar 

  34. Aslan A (2020) Optimization and analysis of process parameters for flank wear, cutting forces and vibration in turning of AISI 5140: a comprehensive study. Measurement 163:107959. https://doi.org/10.1016/j.measurement.2020.107959

    Article  Google Scholar 

  35. Gupta MK, Song Q, Liu Z, Sarikaya M, Mia M, Jamil M et al (2021) Tribological performance based machinability investigations in cryogenic cooling assisted turning of α-β titanium Alloy. Tribol Int 160:107032. https://doi.org/10.1016/j.triboint.2021.107032

    Article  Google Scholar 

  36. Asiltürk I, Akkuş H (2011) Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method. Measurement 44:1697–1704

    Google Scholar 

  37. Sarikaya M, Güllü A (2014) Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL. J Clean Prod 65:604–616. https://doi.org/10.1016/j.jclepro.2013.08.040

    Article  Google Scholar 

  38. Mia M, Dey PR, Hossain MS, Arafat MT, Asaduzzaman M, Shoriat Ullah M et al (2018) Taguchi S/N based optimization of machining parameters for surface roughness, tool wear and material removal rate in hard turning under MQL cutting condition. Meas J Int Meas Confed. https://doi.org/10.1016/j.measurement.2018.02.016

    Article  Google Scholar 

  39. Gupta MK, Korkmaz ME, Sarıkaya M, Krolczyk GM, Günay M, Wojciechowski S (2022) Cutting forces and temperature measurements in cryogenic assisted turning of AA2024-T351 alloy: An experimentally validated simulation approach. Meas J Int Meas Confed 188:110594. https://doi.org/10.1016/j.measurement.2021.110594

    Article  Google Scholar 

  40. Ross NS, Gopinath C, Nagarajan S, Gupta MK, Shanmugam R, Kumar MS et al (2022) Impact of hybrid cooling approach on milling and surface morphological characteristics of Nimonic 80A alloy. J Manuf Process 73:428–439. https://doi.org/10.1016/j.jmapro.2021.11.018

    Article  Google Scholar 

  41. Kumar D, Gururaja S (2020) Machining damage and surface integrity evaluation during milling of UD-CFRP laminates: Dry vs. cryogenic. Compos Struct 247:112504. https://doi.org/10.1016/j.compstruct.2020.112504

    Article  Google Scholar 

  42. Iqbal A, Zhao G, Zaini J, Jamil M, Nauman MM, Khan AM et al (2021) CFRP drilling under throttle and evaporative cryogenic cooling and micro-lubrication. Compos Struct 267:113916. https://doi.org/10.1016/j.compstruct.2021.113916

  43. Morkavuk S, Köklü U, Bağcı M, Gemi L (2018) Cryogenic machining of carbon fiber reinforced plastic (CFRP) composites and the effects of cryogenic treatment on tensile properties: A comparative study. Compos Part B Eng 147:1–11. https://doi.org/10.1016/j.compositesb.2018.04.024

    Article  Google Scholar 

  44. Laghari RA, Li J (2021) Modeling and optimization of cutting forces and effect of turning parameters on SiCp/Al 45% vs SiCp/Al 50% metal matrix composites: a comparative study. SN Appl Sci 3:706. https://doi.org/10.1007/s42452-021-04689-z

    Article  Google Scholar 

  45. Laghari RA, Li J, Mia M (2020) Effects of turning parameters and parametric optimization of the cutting forces in machining SiCp/Al 45 wt% composite. Metals (Basel) 10:840. https://doi.org/10.3390/met10060840

    Article  Google Scholar 

  46. Laghari RA, Li J, Wu Y (2020) Study of machining process of SiCp/Al particle reinforced metal matrix composite using finite element analysis and experimental verification. Materials (Basel) 13:5524. https://doi.org/10.3390/ma13235524

    Article  Google Scholar 

  47. Jamil M, He N, Zhao W, Khan AM, Laghari RA (2022) Tribology and machinability performance of hybrid Al2O3 -MWCNTs nanofluids-assisted MQL for milling Ti-6Al-4 V. Int J Adv Manuf Technol 119:2127–2144. https://doi.org/10.1007/s00170-021-08279-6

    Article  Google Scholar 

  48. Gajrani KK (2020) Assessment of cryo-MQL environment for machining of Ti-6Al-4V. J Manuf Process 60:494–502. https://doi.org/10.1016/j.jmapro.2020.10.038

    Article  Google Scholar 

  49. Pereira O, Celaya A, Urbikaín G, Rodríguez A, Fernández-Valdivielso A, de Lacalle LNL (2020) CO2 cryogenic milling of Inconel 718: cutting forces and tool wear. J Mater Res Technol 9:8459–8468. https://doi.org/10.1016/j.jmrt.2020.05.118

    Article  Google Scholar 

  50. Khanna N, Shah P, Chetan (2020) Comparative analysis of dry, flood, MQL and cryogenic CO2 techniques during the machining of 15–5-PH SS alloy. Tribol Int;146:106196.

  51. Şap E, Usca UA, Gupta MK, Kuntoğlu M (2021) Tool wear and machinability investigations in dry turning of Cu/Mo-SiCp hybrid composites. Int J Adv Manuf Technol 114(1–2):379–96. https://doi.org/10.1007/s00170-021-06889-8

    Article  Google Scholar 

  52. Salur E, Aslan A, Kuntoglu M, Gunes A, Sahin OS (2019) Experimental study and analysis of machinability characteristics of metal matrix composites during drilling. Compos Part B Eng 166:401–413. https://doi.org/10.1016/j.compositesb.2019.02.023

    Article  Google Scholar 

  53. Usca ÜA, Şap S, Uzun M, Kuntoğlu M, Salur E, Karabiber A et al (2022) Estimation, optimization and analysis based investigation of the energy consumption in machinability of ceramic-based metal matrix composite materials. J Mater Res Technol 17:2987–2998. https://doi.org/10.1016/j.jmrt.2022.02.055

    Article  Google Scholar 

  54. Usca ÜA, Uzun M, Kuntoğlu M, Şap S, Giasin K, Pimenov DY (2021) Tribological aspects, optimization and analysis of Cu-B-CrC composites fabricated by powder metallurgy. Materials (Basel) 14:4217

    Article  Google Scholar 

  55. Kuntoglu M (2022) Machining induced tribological investigations in sustainable milling of Hardox 500 steel: A new approach of measurement science. Measurement 201:111715. https://doi.org/10.1016/j.measurement.2022.111715

    Article  Google Scholar 

  56. Şap E, Usca ÜA, Gupta MK, Kuntoğlu M, Sarıkaya M, Pimenov DY et al (2021) Parametric optimization for improving the machining process of Cu/Mo-SiCP composites produced by powder metallurgy. Materials (Basel) 14:1921. https://doi.org/10.3390/ma14081921

    Article  Google Scholar 

  57. Bandyopadhyay BP (1984) Mechanism of formation of built-up edge. Precis Eng. https://doi.org/10.1016/0141-6359(84)90115-6

    Article  Google Scholar 

  58. Salur E, Kuntoğlu M, Aslan A, Pimenov DY (2021) The effects of MQL and dry environments on tool wear, cutting temperature, and power consumption during end milling of AISI 1040 steel. Metals (Basel) 11:1674

    Article  Google Scholar 

  59. Mia M, Gupta MK, Singh G, Królczyk G, Pimenov DY (2018) An approach to cleaner production for machining hardened steel using different cooling-lubrication conditions. J Clean Prod 187:1069–1081. https://doi.org/10.1016/j.jclepro.2018.03.279

    Article  Google Scholar 

  60. Gupta MK, Song Q, Liu Z, Sarikaya M, Jamil M, Mia M et al (2021) Experimental characterisation of the performance of hybrid cryo-lubrication assisted turning of Ti–6Al–4V alloy. Tribol Int 153:106582. https://doi.org/10.1016/j.triboint.2020.106582

    Article  Google Scholar 

  61. Manimaran G, Anwar S, Rahman MA, Korkmaz ME, Gupta MK, Alfaify A et al (2021) Investigation of surface modification and tool wear on milling Nimonic 80A under hybrid lubrication. Tribol Int 155:106762

    Article  Google Scholar 

  62. Usca ÜA, Uzun M, Şap S, Kuntoğlu M, Giasin K, Pimenov DY et al (2022) Tool wear, surface roughness, cutting temperature and chips morphology evaluation of Al/TiN coated carbide cutting tools in milling of Cu–B–CrC based ceramic matrix composites. J Mater Res Technol 16:1243–1259

    Article  Google Scholar 

  63. Usca ÜA, Uzun M, Kuntoğlu M, Sap E, Gupta MK (2021) Investigations on tool wear, surface roughness, cutting temperature, and chip formation in machining of Cu-B-CrC composites. Int J Adv Manuf Technol 116:3011–3025. https://doi.org/10.1007/s00170-021-07670-7

    Article  Google Scholar 

  64. Komanduri R, Brown RH (1981) On the mechanics of chip segmentation in machining. J Eng Ind 103:33–51. https://doi.org/10.1115/1.3184458

    Article  Google Scholar 

  65. Kuntoğlu M (2022) Measurement and analysis of sustainable indicators in machining of ARMOX 500T armor steel. Proc Inst Mech Eng Part C J Mech Eng Sci 236(13):7330–49. https://doi.org/10.1177/09544062221079775

    Article  Google Scholar 

  66. Maruda RW, Krolczyk GM, Nieslony P, Wojciechowski S, Michalski M, Legutko S (2016) The influence of the cooling conditions on the cutting tool wear and the chip formation mechanism. J Manuf Process 24:107–115. https://doi.org/10.1016/j.jmapro.2016.08.006

    Article  Google Scholar 

Download references

Funding

This work funded by the National Natural Science Foundation of China (NSFC) Research Fund for International Young Scientists (RFIS-1) (Grant No. 52250410358).

Author information

Authors and Affiliations

Authors

Contributions

Rashid Ali Laghari: methodology, validation, investigation, formal analysis, writing and editing. Muhammad Jamil: writing, methodology, and investigation. Ning He: resources and overseeing of analysis. Munish Kumar Gupta: review of experimental setup.

Corresponding authors

Correspondence to Ning He or Muhammad Jamil.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laghari, R.A., He, N., Jamil, M. et al. Tribological and machining characteristics of milling SiCp/Al MMC composites under sustainable cooling conditions. Int J Adv Manuf Technol 128, 2613–2630 (2023). https://doi.org/10.1007/s00170-023-12083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12083-9

Keywords

Navigation