Skip to main content
Log in

Effect of layer-by-layer laser remelting process on the microstructure and performance of selective laser melting 316L stainless steel

  • Original Aeticle
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

A Correction to this article was published on 04 October 2023

This article has been updated

Abstract

Reducing the defect density and improving the performance of selective laser melting-forming parts are significant for the development of selective laser melting (a great potential powder additive manufacturing method). Therefore, many methods like layer-by-layer laser remelting have been applied in the selective laser melting process. To investigate the influence of the layer-by-layer laser remelting process on the selective laser melting 316 L SS specimens, a three-dimension mesoscale remelting numerical simulation model in the single powder layer is established, and the microstructure and performance (surface quality, mechanical properties) are measured and analyzed with the different number of layer-by-layer laser remelting. The numerical simulation results show that the remelting process can effectively inhibit the defect. Nerversless, when the number of remelting is large, the over-melting phenomenon occurs, which is harmful to surface quality on the remelting surface. The experimental results also show that surface roughness, microhardness, ultimate strength, and strain can be effectively improved by controlling remelting times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Change history

References

  1. Zhang Y, Liu F, Chen J, Yuan Y (2017) Effects of surface quality on corrosion resistance of 316L stainless steel parts manufactured via SLM. J Laser Appl 29(2):022306. https://doi.org/10.2351/1.4983263

    Article  Google Scholar 

  2. Tabatabaeipour SM, Honarvar F (2010) A comparative evaluation of ultrasonic testing of AISI 316L welds made by shielded metal arc welding and gas tungsten arc welding processes. J Mater ProcessTech 210(8):1043–1050. https://doi.org/10.1016/j.jmatprotec.2010.02.013

    Article  Google Scholar 

  3. Bae KC, Ha KS, Kim YH, Oak JJ, Lee W, Park YH (2020) Building direction dependence of wear resistance of selective laser melted AISI 316L stainless steel under high-speed tribological environment. Int J Adv Manuf Technol 108:2385–2396. https://doi.org/10.1007/s00170-020-05572-8

    Article  Google Scholar 

  4. Yang X, Ma WJ, Ren YJ, Liu SF, Wang Y, Wang WL, Tang HP (2021) Subgrain microstructures and tensile properties of 316L stainless steel manufactured by selective laser melting. J Iron Steel Res Int 28:1159–1167. https://doi.org/10.1007/s42243-021-00561-x

    Article  Google Scholar 

  5. Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN, Shindo PW, Medina FR, Wicker RB (2012) Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 28(1):1–14. https://doi.org/10.1016/S1005-0302(12)60016-4

    Article  Google Scholar 

  6. Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE, Sing SL (2015) Review of selective laser melting: materials and applications. Appl Phys Rev 2(4):041101. https://doi.org/10.1063/1.4935926

    Article  Google Scholar 

  7. Olakanmi EO, Cochrane RF, Dalgarno KW (2015) A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci 74:401–477. https://doi.org/10.1016/j.pmatsci.2015.03.002

    Article  Google Scholar 

  8. Zhang X, Yocom CJ, Mao B, Liao Y (2019) Microstructure evolution during selective laser melting of metallic materials: a review. J Laser Appl 31(3):031201. https://doi.org/10.2351/1.5085206

    Article  Google Scholar 

  9. Fereiduni E, Ghasemi A, Elbestawi M (2020) Selective laser melting of aluminum and titanium matrix composites: recent progress and potential applications in the aerospace industry. Aerospace 7(6):77. https://doi.org/10.3390/aerospace7060077

    Article  Google Scholar 

  10. Yadroitsev I, Krakhmalev P, Yadroitsava I (2014) Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution. J Alloys Compd 583:404–409. https://doi.org/10.1016/j.jallcom.2013.08.183

    Article  Google Scholar 

  11. Leal R, Barreiros FM, Alves L, Romeiro F, Vasco JC, Santos M, Marto C (2017) Additive manufacturing tooling for the automotive industry. The Int J Adv Manuf Technol 92:1671–1676. https://doi.org/10.1007/s00170-017-0239-8

    Article  Google Scholar 

  12. Wang P, Deng L, Prashanth KG, Pauly S, Eckert J, Scudino S (2018) Microstructure and mechanical properties of Al-Cu alloys fabricated by selective laser melting of powder mixtures. J Alloys Compd 735:2263–2266. https://doi.org/10.1016/j.jallcom.2017.10.168

    Article  Google Scholar 

  13. Song B, Dong S, Zhang B, Liao H, Coddet C (2012) Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Mater Des 35:120–125. https://doi.org/10.1016/j.matdes.2011.09.051

    Article  Google Scholar 

  14. Luo H, Li XQ, Pan CL, He PJ, Zeng KL (2021) Microstructural evolution and mechanical properties of Alloy 718 fabricated by selective laser melting following different post-treatments. Rare Metals 40:3222–3234. https://doi.org/10.1007/s12598-020-01688-8

    Article  Google Scholar 

  15. Zhou J, Han X, Li H, Liu S, Yi J (2021) Investigation of layer-by-layer laser remelting to improve surface quality, microstructure, and mechanical properties of laser powder bed fused AlSi10Mg alloy. Mater Des 210:110092. https://doi.org/10.1016/j.matdes.2021.110092

    Article  Google Scholar 

  16. Lu P, Cheng-Lin Z, Hai-Yi L, Liang W, Tong L (2020) A new two-step selective laser remelting of 316L stainless steel: process, density, surface roughness, mechanical properties, microstructure. Mater Res Express 7(5):056503. https://doi.org/10.1088/2053-1591/ab8b86

    Article  Google Scholar 

  17. Karimi J, Suryanarayana C, Okulov I, Prashanth KJ (2021) Selective laser melting of Ti6Al4V: effect of laser re-melting. Mater Sci Eng A 805:140558. https://doi.org/10.1016/j.msea.2020.140558

    Article  Google Scholar 

  18. Qiu C, Wang Z, Aladawi AS, Kindi MA, Hatmi IA, Chen H, Chen L (2019) Influence of laser processing strategy and remelting on surface structure and porosity development during selective laser melting of a metallic material. Metall Mater Trans A 50:4423–4434. https://doi.org/10.1007/s11661-019-05348-0

    Article  Google Scholar 

  19. Metelkova J, Ordnung D, Kinds Y, Van Hooreweder B (2021) Novel strategy for quality improvement of up-facing inclined surfaces of LPBF parts by combining laser-induced shock waves and in situ laser remelting. J Mater Process Technol 290:116981. https://doi.org/10.1016/j.jmatprotec.2020.116981

    Article  Google Scholar 

  20. Lu P, Cheng-Lin Z, Liang W, Tong L, Xiao-Cheng L (2020) Research on mechanical properties and microstructure by selective laser melting of 316L stainless steel. Mater Res Express 6(12):1265h7. https://doi.org/10.1088/2053-1591/ab6b67

    Article  Google Scholar 

  21. Pei W, Zhengying W, Zhen C, Junfeng L, Shuzhe Z, Jun D (2017) Numerical simulation and parametric analysis of selective laser melting process of AlSi10Mg powder. Appl Phys A 123:1–15. https://doi.org/10.1007/s00339-017-1143-7

    Article  Google Scholar 

  22. Cao L (2021) Workpiece-scale numerical simulations of SLM molten pool dynamic behavior of 316L stainless steel. Comput Math Appl 96:209–228. https://doi.org/10.1016/j.camwa.2020.04.020

    Article  MathSciNet  MATH  Google Scholar 

  23. Acharya R, Sharon JA, Staroselsky A (2017) Prediction of microstructure in laser powder bed fusion process. Acta Mater 124:360–371. https://doi.org/10.1016/j.actamat.2016.11.018

    Article  Google Scholar 

  24. Chen X, Mu W, Xu X, Liu W, Huang L, Li H (2021) Numerical analysis of double track formation for selective laser melting of 316L stainless steel. Appl Phys A 127:1–13. https://doi.org/10.1007/s00339-021-04728-x

    Article  Google Scholar 

  25. Cao L (2021) Mesoscopic-scale numerical investigation including the influence of scanning strategy on selective laser melting process. Comput Mater Sci 189:110263. https://doi.org/10.1016/j.commatsci.2020.110263

    Article  Google Scholar 

  26. Bayat M, Mohanty S, Hattel JH (2019) Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF. Int J Heat Mass Transf 139:95–114. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.003

    Article  Google Scholar 

  27. Sun Y, Jiang W, Xu G, Chen T, Mao L (2021) Influence of rough surface of deposited area on quality of powder spreading during selective laser melting: discrete element simulations. Chin J Theor App Mechan 53(12):3217–3227. https://doi.org/10.6052/0459-1879-21-399

    Article  Google Scholar 

  28. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225. https://doi.org/10.1016/0021-9991(81)90145-5

    Article  MATH  Google Scholar 

  29. Cook PS, Murphy AB (2020) Simulation of melt pool behaviour during additive manufacturing: Underlying physics and progress. Addit Manuf 31:100909. https://doi.org/10.1016/j.addma.2019.100909

    Article  Google Scholar 

  30. Cao L (2021) Numerical investigation on molten pool dynamics during multi-laser array powder bed fusion process. Metall Mater Trans A 52:211–227. https://doi.org/10.1007/s11661-020-06076-6

    Article  Google Scholar 

  31. Cao L (2019) Numerical simulation of the impact of laying powder on selective laser melting single-pass formation. Int J Heat Mass Transf 141:1036–1048. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.053

    Article  Google Scholar 

  32. Tang C, Tan JL, Wong CH (2018) A numerical investigation on the physical mechanisms of single track defects in selective laser melting. Int J Heat Mass Transf 126:957–968. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.073

    Article  Google Scholar 

  33. Li Y, Zhou K, Tor SB, Chua CK, Leong KF (2017) Heat transfer and phase transition in the selective laser melting process. Int J Heat Mass Transf 108:2408–2416. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.093

    Article  Google Scholar 

  34. Liu B, Li BQ, Li Z (2019) Selective laser remelting of an additive layer manufacturing process on AlSi10Mg. Results in physics 12:982–988. https://doi.org/10.1016/j.rinp.2018.12.018

    Article  Google Scholar 

  35. Li K, Zhao Z, Zhou H, Zhou H, Jin J (2020) Numerical analyses of molten pool evolution in laser polishing Ti6Al4V. J Manuf Process 58:574–584. https://doi.org/10.1016/j.jmapro.2020.08.045

    Article  Google Scholar 

  36. Zhang M, Sun CN, Zhang X, Goh PC, Wei J, Hardacre D, Li H (2017) Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L: influence of processing parameters. Mater Sci Eng A 703:251–261. https://doi.org/10.1016/j.msea.2017.07.071

    Article  Google Scholar 

  37. Kong D, Dong C, Wei S, Ni X, Zhang L, Li R, Wang L, Man C, Li X (2021) About metastable cellular structure in additively manufactured austenitic stainless steels. Addit Manuf 38:101804. https://doi.org/10.1016/j.addma.2020.101804

    Article  Google Scholar 

  38. Pham MS, Dovgyy B, Hooper PA, Gourlay CM, Piglione A (2020) The role of side-branching in microstructure development in laser powder-bed fusion. Nat Commun 11(1):749. https://doi.org/10.1038/s41467-020-14453-3

    Article  Google Scholar 

  39. Li J, Yang L, Zheng H, Jiang Z, Sui Z (2021) Influence of laser selection melting times on the surface properties of 316L stainless steel. Surf Technol 50(6):93–100

    Google Scholar 

  40. Bartolomeu F, Buciumeanu M, Pinto E, Alves N, Carvalho O, Silva FS, Miranda G (2017) 316L stainless steel mechanical and tribological behavior—a comparison between selective laser melting, hot pressing and conventional casting. Addit Manuf 16:81–89. https://doi.org/10.1016/j.addma.2017.05.007

    Article  Google Scholar 

  41. Sadali MF, Hassan MZ, Ahmad F, Yahaya H, Rasid ZA (2020) Influence of selective laser melting scanning speed parameter on the surface morphology, surface roughness, and micropores for manufactured Ti6Al4V parts. J Mater Res 35(15):2025–2035. https://doi.org/10.1557/jmr.2020.84

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51875152), the Anhui Province College Excellent Young Talents Fund Project (Grant No. gxyq2020034), Anhui Province Key Research and Development Program Project (202004a05020066, 202104a05020049), Anhui Province University Outstanding Youth Research Project (Project Approval Number: 2022AH020025), and Key Research Project of Natural Science of Anhui Provincial Colleges and Universities (Project Approval Number: 2022AH050257).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design.

Corresponding author

Correspondence to Wei Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In section 2.1 of the article, the Figure 3 image was inadvertently copied and pasted as Figure 4 image.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wen, K., Mu, W. et al. Effect of layer-by-layer laser remelting process on the microstructure and performance of selective laser melting 316L stainless steel. Int J Adv Manuf Technol 128, 2221–2236 (2023). https://doi.org/10.1007/s00170-023-12078-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12078-6

Keywords

Navigation