Skip to main content

Advertisement

Log in

Research on optimization method of stainless steel sawing process parameters based on multi-tooth sawing force prediction model

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this study, a multi-tooth sawing force prediction model is proposed for the stainless steel sawing process, combined with the classical cutting theory of band saw and the introduction of tooth equivalent cutting width. Through the numerical simulation of sawing process and sensitivity analysis method, the influence law of feed speed and cutting speed on cutting force was analyzed. A sawing process parameter optimization design model with sawing force and sawing efficiency as the optimization objectives was established and solved by multi-objective optimization algorithm to determine the optimal combination of coordinated sawing force and sawing efficiency process parameters. The stainless steel sawing test results show that the multi-tooth sawing force prediction model and the experimental results match; the maximum error does not exceed 6%, making it better to achieve the prediction of sawing force in high-frequency strong impact conditions. With the optimized design of process parameters, the sawing force decreased by a maximum 20.43%, and the sawing efficiency increased by a maximum 54.72%. This study provides a reference for metal sawing force prediction and process parameter optimization, and also offers theoretical guidance for developing high-end sawing equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

The authors confirm that the data supporting this study are available within the article.

References

  1. Wang Y, Ni P, Wen D, Tan D, Pan X, Lu H, Wang D (2020) SA-OMA based dynamic characteristics optimization for gear box of sawing machine. Chin High Technol Lett 30(03):314–324

    Google Scholar 

  2. Aryafar A, Mikaeil R, Haghshenas S, Haghshenas S (2018) Application of metaheuristic algorithms to optimal clustering of sawing machine vibration. Measurement 124:20–31. https://doi.org/10.1016/j.measurement.2018.03.056

    Article  Google Scholar 

  3. Wang Y, Zhang Y, Tan D, Zhang Y (2021) Key technologies and development trends in advanced intelligent sawing equipments. Chin J Mech Eng 34(1):175–194. https://doi.org/10.1186/s10033-021-00547-6

    Article  Google Scholar 

  4. Tan D, Zhang L, Ai Q (2019) An embedded self-adapting network service framework for networked manufacturing system. J Intell Manuf 30(2):539–556. https://doi.org/10.1007/s10845-016-1265-3

    Article  Google Scholar 

  5. Li L, Tan Y, Xu W, Ni Y, Yang J, Tan D (2023) Fluid-induced transport dynamics and vibration patterns of multiphase vortex in the critical transition states. Int J Mech Sci 252. https://doi.org/10.1016/j.ijmecsci.2023.108376. Accessed 5 Jun 2023

  6. Deng Z, Wan L, Zhang R (2008) Research progresses of high efficiency and precision grinding for hard to machine materials. Chin Mech Eng 19(24):3018–3023

    Google Scholar 

  7. Bai W (2018) Machining mechanism of vibration assisted cutting and machinability investigations of typical difficult-to-machine materials. Dissertation,. Huazhong University of Science and Technology

    Google Scholar 

  8. Yuan S, He L, Zhan G, Jiang H, Zou Z (2018) Research on surface roughness of 304 stainless steel cut by cemented carbide micro pit tool. J Mech Eng 54(15):232–240. https://doi.org/10.3901/JME.2018.15.232

    Article  Google Scholar 

  9. Ling L, Li X, Wang X, Hu Y (2012) Constitutive model of stainless steel 0Cr18Ni9 and its influence on cutting force prediction. Chin Mech Eng 23(18):2243–2248. https://doi.org/10.3969/j.issn.1004-132X.2012.18.021

    Article  Google Scholar 

  10. Zhou FJ (2014) Research on machined surface characteristics of 304 stainless steel. Dissertation,. Huazhong University of Science and Technology

    Google Scholar 

  11. Li L, Gu Z, Xu W, Tan Y, Fan X, Tan D (2023) Mixing mass transfer mechanism and dynamic control of gas-liquid-solid multiphase flow based on VOF-DEM coupling. Energy 272. https://doi.org/10.1016/j.energy.2023.127015. Accessed 5 Jun 2023

  12. Hu X, Xu F, Tan D (2020) A synchronous sampling-based direct current estimation method for self-sensing active magnetic bearings. J Zhejiang Univ Sci 21(5):401–405. https://doi.org/10.1631/jzus.A2000067

    Article  Google Scholar 

  13. Wang T, Wang C, Yin Y, Zhang Y, Li L, Tan D (2023) Analytical approach for nonlinear vibration response of the thin cylindrical shell with a straight crack. Nonlinear Dynam 111(12):10957–10980. https://doi.org/10.1007/s11071-023-08460-4

    Article  Google Scholar 

  14. Ge J, Ji S, Tan D (2018) A gas-liquid-solid three-phase abrasive flow processing method based on bubble collapsing. Int J Adv Manuf Technol 95(1-4):1069–1085. https://doi.org/10.1007/s00170-017-1250-9

    Article  Google Scholar 

  15. Yin Z, Lu J, Li L, Wang T, Wang R, Fan X, Lin H, Huang Y, Tan D (2020) Optimized scheme for accelerating the slagging reaction and slag-metal-gas emulsification in a basic oxygen furnace. Appl Sci 10(15):5101. https://doi.org/10.3390/app10155101

    Article  Google Scholar 

  16. Ko T, Kim H (1999) Mechanistic cutting force model in band sawing. Int J Mach Tools Manuf 39(8):1185–1197. https://doi.org/10.1016/S0890-6955(98)00087-X

    Article  Google Scholar 

  17. Andersson C, Andersson M, Stahl J (2001) Bandsawing. Part I: cutting force model including effects of positional errors, tool dynamics and wear. Int J Mach Tools Manuf 41(2):227–236. https://doi.org/10.1016/S0890-6955(00)00064-X

    Article  Google Scholar 

  18. Andersson C, Stahl J, Hellbergh H (2001) Bandsawing. Part II: detecting positional errors, tool dynamics and wear by cutting force measurement. Int J Mach Tools Manuf 41(2):237–253. https://doi.org/10.1016/S0890-6955(00)00065-1

    Article  Google Scholar 

  19. Andersson C (2001) Bandsawing. Part III: stress analysis of saw tooth microgeometry. Int J Mach Tools Manuf 41(2):255–263. https://doi.org/10.1016/S0890-6955(00)00066-3

    Article  Google Scholar 

  20. Li BL (2012) Research on analytical prediction of cutting forces in stainless steel machining. Dissertation,. Huazhong University of Science and Technology

    Google Scholar 

  21. Tang J, Lin X, Tang J, Lou J (2012) Force theory simulation research of metal cutting process based on DEFORM-3D software. Int J Mach Tools Manuf 62(8):99–103

    Google Scholar 

  22. Ren Y, Luo Y, Zhou Z, Ou Y (2017) Numerical simulation and process experiment research on sawing force of bandsaw. Tool. Engineering 51(06):15–19. https://doi.org/10.16567/j.cnki.1000-7008.2017.06.003

    Article  Google Scholar 

  23. Lv J, Zhao J, Liu Q (2013) Optimization of cutting parameters based on multi-objective genetic algorithm NSGA- II. Appl Mech Mater 281:517–522. https://doi.org/10.4028/www.scientific.net/AMM.281.517. Accessed 5 Feb 2023

  24. Subramanian M, Sakthivel M, Sooryaprakash K, Sudhakaran R (2013) Optimization of cutting parameters for cutting force in shoulder milling of Al7075-T6 using response surface methodology and genetic algorithm. Procedia Eng 64:690–700. https://doi.org/10.1016/j.proeng.2013.09.144

    Article  Google Scholar 

  25. Gaikhe V, Sahu J, Pawade R (2018) Optimization of cutting parameters for cutting force minimization in helical ball end milling of Inconel 718 by using genetic algorithm. Procedia CIRP 77:477–480. https://doi.org/10.1016/j.procir.2018.08.261

    Article  Google Scholar 

  26. Gurgen A, Cakmak A, Yildiz S, Malkocoglu A (2022) Optimization of CNC operating parameters to minimize surface roughness of Pinus sylvestris using integrated artificial neural network and genetic algorithm. Maderas: Cienc Tecnol 24:1–12. https://doi.org/10.4067/s0718-221x2022000100401

    Article  Google Scholar 

  27. Pedrammehr S, Hejazian M, Qazani M, Parvaz H, Pakzad S, Ettefagh M, Suhail A (2022) Machine learning-based modelling and meta-heuristic-based optimization of specific tool wear and surface roughness in the milling process. AXIOMS 11(9):1–13. https://doi.org/10.3390/axioms11090430

    Article  Google Scholar 

  28. Chen S, Tan D (2018) A SA-ANN-based modeling method for human cognition mechanism and the PSACO cognition algorithm. Complexity 2018:21. https://doi.org/10.1155/2018/6264124

    Article  MathSciNet  Google Scholar 

  29. Wang J, Gao S, Tang Z, Tan D, Cao B, Fan J (2021) A context-aware recommendation system for improving manufacturing process modeling. J Intell Manuf 34(3):1347–1368. https://doi.org/10.1007/s10845-021-01854-4

    Article  Google Scholar 

  30. Lyu H, Zhang L, Tan D (2022) The AAPF fault-tolerant method for small and complex product assembly. Proc Inst Mech Eng B: J Eng Manuf 236(8):1007–1021. https://doi.org/10.1177/09544054211059277

    Article  Google Scholar 

  31. Tan D, Chen S, Bao G, Zhang L (2018) An embedded lightweight GUI component library and ergonomics optimization method for industry process monitoring. Front Inf Technol Electron Eng 19(5):604–625. https://doi.org/10.1631/FITEE.1601660

    Article  Google Scholar 

  32. Zhao X (2015) Study on the variation of micro milling forces and specific cutting forces with tool wear. Int J Mach Tools Manuf 7:19–22. https://doi.org/10.13462/j.cnki.mmtamt.2015.07.006

    Article  Google Scholar 

  33. Li X, Tang Z, Chen T (1997) Calculation of cutting force of bimetal band saw blade. Manuf Technol Mach Tool 03:29–31

    Google Scholar 

  34. Li B, Hu Y, Wang X, Li C (2011) Cutting force prediction based on oblique cutting theory in end milling. Chin Mech Eng 22(19):2283–2288

    Google Scholar 

  35. Zhu L (2018) Modeling simulation and testing on milling force of jointed die in consideration of tool wear. Dissertation, Harbin University of Science and Technology

    Google Scholar 

  36. Le-Ngoc L, McCallion H (1999) Self-induced vibration of bandsaw blades during cutting. Proc Inst Mech Eng C J Mech Eng Sci 213(4):371–380. https://doi.org/10.1243/0954406991522329

    Article  Google Scholar 

  37. Okai R, Tanaka C, Iwasaki Y, Ohtani T (2005) Application of a novel technique for band sawing using a tip-inserted saw regarding surface profiles. Holz Als Roh-Und Werkstoff 63(4):256–265. https://doi.org/10.1007/s00107-005-0023-6

    Article  Google Scholar 

  38. Lang J (2018) Analysis and Experimental research on transverse vibration characteristics of textured band saw blade. Dissertation, Hangzhou Dianzi University, Hangzhou

    Google Scholar 

  39. Zheng S, Yu Y, Qiu M, Wang L, Tan D (2021) A modal analysis of vibration response of a cracked fluid-filled cylindrical shell. Appl Math Model 91:934–958. https://doi.org/10.1016/j.apm.2020.09.040

    Article  MathSciNet  MATH  Google Scholar 

  40. Li L, Lu B, Xu W, Gu Z, Yang Y, Tan D (2023) Mechanism of multiphase coupling transport evolution of free sink vortex. Acta Phys Sin 72(3). https://doi.org/10.7498/aps.72.20221991

  41. Li L, Qi H, Yin Z, Li D, Zhu Z, Tangwarodomnukun V, Tan D (2020) Investigation on the multiphase sink vortex Ekman pumping effects by CFD-DEM coupling method. Powder Technol 360:462–480. https://doi.org/10.1016/j.powtec.2019.06.036

    Article  Google Scholar 

  42. Huang Y, Di O, Li Y (2016) Finite element simulation of aluminum alloy 2A12 turning based on Deform-3D. Mach Manufac 54(6):41–43. https://doi.org/10.3969/j.issn.1000-4998.2016.06.014

    Article  Google Scholar 

  43. Zhang Z, Zhang J, Wang L (2011) FEA of cutting force of stainless steel based on DEFORM-3D. Light Indust Mach 29(4):40–42. https://doi.org/10.3969/j.issn.1005-2895.2011.04.010

    Article  Google Scholar 

  44. Li L, Tan D, Yin Z, Wang T, Fan X, Wang R (2021) Investigation on the multiphase vortex and its fluid-solid vibration characters for sustainability production. Renew Energy 175:887–909. https://doi.org/10.1016/j.renene.2021.05.027

    Article  Google Scholar 

  45. Ge M, Ji M, Tan D, Cao H (2021) Erosion analysis and experimental research of gas-liquid-solid soft abrasive flow polishing based on cavitation effects. Int J Adv Manuf Technol 114(11-12):3419–3436. https://doi.org/10.1007/s00170-021-06752-w

    Article  Google Scholar 

  46. Tan D, Li L, Yin Z, Li D, Zhu Y, Zheng S (2020) Ekman boundary layer mass transfer mechanism of free sink vortex. Int J Heat Mass Transf 150:119250. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119250

    Article  Google Scholar 

  47. Lu J, Wang T, Li L, Yin Z, Wang R, Fan X, Tan D (2020) Dynamic characteristics and wall effects of bubble bursting in gas-liquid-solid three-phase particle flow. Processes 8(7):760. https://doi.org/10.1016/10.3390/pr8070760

    Article  Google Scholar 

  48. Wang Y, Ni P, Wen D, Lin Q, Wang D, Ma C, Rao Y, Wang H, Tan D (2019) Dynamic performance optimization of circular sawing machine gearbox. Appl Sci 9(20):4458. https://doi.org/10.3390/app9204458

    Article  Google Scholar 

  49. Pan Y, Ji S, Tan D (2020) Cavitation based soft abrasive flow processing method. Int J Adv Manuf Technol 109(9-12):2587–2602. https://doi.org/10.1007/s00170-020-05836-3

    Article  Google Scholar 

  50. Li L, Lu J, Fang H, Yin Z, Wang T, Wang R, Fan X, Zhao L, Tan D, Wan Y (2020) Lattice Boltzmann method for fluid-thermal systems: status, hotspots, trends and outlook. IEEE Access 8:27649–27675. https://doi.org/10.1109/ACCESS.2020.2971546

    Article  Google Scholar 

  51. Tan D, Li L, Zhu Y, Zheng S, Yin Z, Li D (2019) Critical penetration condition and Ekman suction-extraction mechanism of sink vortex. J Zhejiang Univ Sci 20(1):61–72. https://doi.org/10.1631/jzus.A1800260

    Article  Google Scholar 

  52. Chen Y, Fan L, Zhang G, Yang D (2020) The NSGA-II algorithm of hydraulic hybrid vehicle powertrain parameter optimization. Machinery Design and Manufacture 11):179-182+187:10.19356/j.cnki.1001-3997.2020.11.045

    Google Scholar 

  53. Deng W, Zhang X, Zhou Y, Liu Y, Zhou X, Chen H, Zhao H (2022) An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems. Inf Sci 585:441–453. https://doi.org/10.1016/j.ins.2021.11.052

    Article  Google Scholar 

  54. Zhang L, Lv H, Tan D, Xu F, Chen J, Bao G, Cai S (2018) Adaptive quantum genetic algorithm for task sequence planning of complex assembly systems. Electron Lett 54(14):870–871. https://doi.org/10.1049/el.2018.0609

    Article  Google Scholar 

Download references

Code availability

Custom codes were implemented in the software as explained in details in the manuscript.

Funding

The authors received financial support from the projects of the Natural Science Foundation of China (grant number 51705463).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research, writing, and reviewing of the paper.

Corresponding author

Correspondence to Yangyu Wang (CA).

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have agreed to authorship, read and approved the manuscript, and given consent for submission and subsequent publication of the manuscript. The authors guarantee that the contribution to the work has not been previously published elsewhere.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, P., Wang (CA), Y., Tan, D. et al. Research on optimization method of stainless steel sawing process parameters based on multi-tooth sawing force prediction model. Int J Adv Manuf Technol 128, 4513–4533 (2023). https://doi.org/10.1007/s00170-023-12051-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12051-3

Keywords

Navigation