Skip to main content
Log in

Microstructure modification of grain refinement for 304 stainless steel induced by pre-stress grinding and control

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The grain refinement behaviors of stainless steel materials subjecting to pre-stress grinding (PG) were investigated using a 3D FE-CA coupling method in conjunction with experimental comparisons. The qualitative agreement with experimental results was found to be good. The visual tracking of the evolution of recrystallized grains (R-grains) during pre-stress grinding revealed distinct stages, including nucleation, nucleus blooming, grain coarsening, and stable size stages. Notably, the incubation period and coarsening period of R-grains were observed to occur within two different time domains, owing to the time-varying temperature and plastic deformation induced by PG, which was different from the constant temperature-strain process (conventional hot deformation). By calculating the grinding temperature and plastic strain rate during PG, a derived Z parameter was used to determine the critical strain for dynamic recrystallization (DRX). The comparison of the critical DRX strain with the plastic strain in PG reveals the reasons for the difficulty changes for obtaining DRX transformation in deeper positions of ground surface layer. The results indicated that the acquisition of DRX on ground surface requires the utilization of aggressive grinding parameters, including larger depth of cut, slower feed speed, slightly higher wheel linear speed, and pre-stress in PG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Availability of data and material may be acquired after this article being accepted.

References

  1. Liao Z, la Monaca A, Murray J, Speidel A, Ushmaev D, Clare A, Axinte D, M'Saoubi R (2021) Surface integrity in metal machining-Part I: Fundamentals of surface characteristics and formation mechanisms. Int J Mach Tool Manu 162:103687. https://doi.org/10.1016/j.ijmachtools.2020.103687

    Article  Google Scholar 

  2. Xu D, Liao Z, Axinte D, Sarasua JA, M'Saoubi R, Wretland A (2020) Investigation of surface integrity in laser-assisted machining of nickel based superalloy. Mater Design 194:108851. https://doi.org/10.1016/j.matdes.2020.108851

    Article  CAS  Google Scholar 

  3. Cui X, Li C, Yang M, Liu M, Gao T, Wang X, Said Z, Sharma S, Zhang Y (2023) Enhanced grindability and mechanism in the magnetic traction nanolubricant grinding of Ti-6Al-4V. Tribol Int 186:108603. https://doi.org/10.1016/j.triboint.2023.108603

    Article  CAS  Google Scholar 

  4. Lu S, Guo S, Zhang J, Jiang Q, Zhou C, Zhang B (2022) Grindability of high performance difficult-to-machine materials. Surf Technol 51(3):12–42. https://doi.org/10.16490/j.cnki.issn.1001-3660.2022.03.002

    Article  Google Scholar 

  5. Zhou N, Peng RL, Pettersson R (2016) Surface integrity of 2304 duplex stainless steel after different grinding operations. J Mater Process Tech 229:294–304. https://doi.org/10.1016/j.jmatprotec.2015.09.031

    Article  CAS  Google Scholar 

  6. Manimaran G, Pradeep Kumar M, Venkatasamy R (2014) Influence of cryogenic cooling on surface grinding of stainless steel 316. Cryogenics 2014(59):76–83. https://doi.org/10.1016/j.cryogenics.2013.11.005

    Article  ADS  CAS  Google Scholar 

  7. Wang Y, Deng Y, Xiu S (2018) Study on the dynamic recrystallization mechanism during pre-stress dry grinding. J Manuf Process 32:100–109. https://doi.org/10.1016/j.jmapro.2018.01.021

    Article  Google Scholar 

  8. Wang Y, Xiu S, Zhang S (2019) Controlling grain sizes of 42CrMo steel by pre-stress hardening grinding. Materials 12(19):3124. https://doi.org/10.3390/ma12193124

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deng Y, Xiu S, Shi X, Sun C, Wang Y (2017) Study on the effect mechanisms of pre-stress on residual stress and surface roughness in PSHG. Int J Adv Manuf Tech 88:3243–3256. https://doi.org/10.1007/s00170-016-9033-2

    Article  Google Scholar 

  10. Hou Z, Xiu S, Yao Y, Li Q, Wang Y, Zou X (2022) The study of the improvement and mechanisms on ASS surface topography in pre-stress grinding considering SCC. Int J Adv Manuf Tech 121(11):7733–7748. https://doi.org/10.1007/s00170-022-09778-w

    Article  Google Scholar 

  11. Hou Z, Xiu S, Yao Y, Sun C (2023) The residual stress and martensitic transformation of 304 stainless steel in pre-stress grinding: influence and control on chloride induced SCC. J Mater Res Technol 24:4601–4617. https://doi.org/10.1016/j.jmrt.2023.04.096

    Article  CAS  Google Scholar 

  12. Imbrogno S, Rinaldi S, Umbrello D, Filice L, Franchi R, Del Prete A (2018) A physically based constitutive model for predicting the surface integrity in machining of Waspaloy. Mater Design 152:140–155. https://doi.org/10.1016/j.matdes.2018.04.069

    Article  CAS  Google Scholar 

  13. Guo Y, Saldana C, Dale Compton W, Chandrasekar S (2011) Controlling deformation and microstructure on machined surfaces. Acta Mater 59(11):4538–4547. https://doi.org/10.1016/j.actamat.2011.03.076

    Article  ADS  CAS  Google Scholar 

  14. Zhang W, Wang X, Wang S, Wu H, Yang C, Hu Y, Fang K, Jiang H (2021) Combined effects of machining-induced residual stress and external load on SCC initiation and early propagation of 316 stainless steel in high temperature high pressure water. Corros Sci 190:109644. https://doi.org/10.1016/j.corsci.2021.109644

    Article  CAS  Google Scholar 

  15. Yang C, Jiang X, Zhang W, Wang X (2022) Enhancing stress corrosion cracking resistance of machined surface via surface mechanical grinding treatment for AISI 316 L stainless steel. Mater Charact 194:112493. https://doi.org/10.1016/j.matchar.2022.112493

    Article  CAS  Google Scholar 

  16. Huang K, Logé RE (2016) A review of dynamic recrystallization phenomena in metallic materials. Mater Design 111:548–574. https://doi.org/10.1016/j.matdes.2016.09.012

    Article  CAS  Google Scholar 

  17. Chen F, Qi K, Cui Z, Lai X (2014) Modeling the dynamic recrystallization in austenitic stainless steel using cellular automaton method. Comp Mater Sci 83:331–340. https://doi.org/10.1016/j.commatsci.2013.11.029

    Article  CAS  Google Scholar 

  18. Xu X, Zhang J, Outeiro J, Xu B, Zhao W (2020) Multiscale simulation of grain refinement induced by dynamic recrystallization of Ti6Al4V alloy during high speed machining. J Mater Process Tech 286:116834. https://doi.org/10.1016/j.jmatprotec.2020.116834

    Article  CAS  Google Scholar 

  19. Ding R, Guo ZX (2002) Microstructural modelling of dynamic recrystallisation using an extended cellular automaton approach. Comp Mater Sci 23(1-4):209–218. https://doi.org/10.1016/S0927-0256(01)00211-7

    Article  CAS  Google Scholar 

  20. Kim S, Yoo Y (2001) Dynamic recrystallization behavior of AISI 304 stainless steel. Mat Sci Eng A-Struct 311(1-2):108–113. https://doi.org/10.1016/S0921-5093(01)00917-0

    Article  Google Scholar 

  21. Yao Y, Xiu S, Sun C, Hong Y, Hou Z, Zou X (2023) Surface modification of 40Cr steel subjected to composite strengthening grinding process. Mater Charact 196:112590. https://doi.org/10.1016/j.matchar.2022.112590

    Article  CAS  Google Scholar 

  22. Sun C, Hong Y, Xiu S, Yao Y (2021) Grain refinement mechanism of metamorphic layers by abrasive grinding hardening. J Manuf Process 69:125–141. https://doi.org/10.1016/j.jmapro.2021.07.040

    Article  Google Scholar 

  23. Li H, Sun X, Yang H (2016) A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation, DRX microstructural evolution and mechanical responses in titanium alloys. Int J Plasticity 87:154–180. https://doi.org/10.1016/j.ijplas.2016.09.008

    Article  CAS  Google Scholar 

  24. Chen F, Wang H, Zhu H, Zhu H, Ren F, Cui Z (2019) High-temperature deformation mechanisms and physical-based constitutive modeling of ultra-supercritical rotor steel. J Manuf Process 38:223–234. https://doi.org/10.1016/j.jmapro.2019.01.021

    Article  Google Scholar 

  25. Krishnaprasad K, Sumesh C, Ramesh A (2019) Numerical modeling and multi objective optimization of face milling of AISI 304 steel. J Appl Comput Mech 5(4):749–762. https://doi.org/10.22055/JACM.2019.27528.1414

    Article  Google Scholar 

  26. Jiang J, Ge P, Sun S, Wang D, Wang Y, Yang Y (2016) From the microscopic interaction mechanism to the grinding temperature field: an integrated modelling on the grinding process. Int J Mach Tool Manu 110:27–42. https://doi.org/10.1016/j.ijmachtools.2016.08.004

    Article  Google Scholar 

  27. Xiu S, Deng Y, Kong X (2019) Effects of stress on phase transformations in grinding by FE modeling and experimental approaches. Materials 12(14):2327. https://doi.org/10.3390/ma12142327

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hadad M, Sadeghi B (2012) Thermal analysis of minimum quantity lubrication-MQL grinding process. Int J Mach Tool Manu 63:1–15. https://doi.org/10.1016/j.ijmachtools.2012.07.003

    Article  Google Scholar 

  29. Rowe WB, Black SCE, Mills B, Morgan MN, Qi HS (1997) Grinding temperatures and energy partitioning. Proc R Soc A: Math Phys Eng Sci 453(1960):1083–1104. https://doi.org/10.1098/rspa.1997.0061

    Article  ADS  CAS  Google Scholar 

  30. Chen F, Zhu H, Chen W, Ou H, Cui Z (2021) Multiscale modeling of discontinuous dynamic recrystallization during hot working by coupling multilevel cellular automaton and finite element method. Int J Plasticity 145:103064. https://doi.org/10.1016/j.ijplas.2021.103064

    Article  Google Scholar 

  31. Zener C, Hollomon JH (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15(1):22–32. https://doi.org/10.1063/1.1707363

    Article  ADS  Google Scholar 

  32. Dehghan-Manshadi A, Barnett MR, Hodgson PD (2008) Hot deformation and recrystallization of austenitic stainless steel: Part I. Dynamic recrystallization. Metall Mater Trans A 39(6):1359–1370. https://doi.org/10.1007/s11661-008-9512-7

    Article  CAS  Google Scholar 

  33. Sadeghian B, Taherizadeh A, Atapour M, Saeidi N, Alhaji A (2021) Phase-field simulation of microstructure evolution during friction stir welding of 304 stainless steel. Mech Mater 163:104076. https://doi.org/10.1016/j.mechmat.2021.104076

    Article  Google Scholar 

  34. Chen MS, Yuan WQ, Lin YC, Li HB, Zou ZH (2017) Modeling and simulation of dynamic recrystallization behavior for 42CrMo steel by an extended cellular automaton method. Vacuum 146:142–151. https://doi.org/10.1016/j.vacuum.2017.09.041

    Article  ADS  CAS  Google Scholar 

  35. Yazdipour N, CHJ D, Hodgson PD (2008) Microstructural modeling of dynamic recrystallization using irregular cellular automata. Comp Mater Sci 44(2):566–576. https://doi.org/10.1016/j.commatsci.2008.04.027

    Article  CAS  Google Scholar 

  36. Liu H, Zhang J, Xu B, Xu X, Zhao W (2020) Prediction of microstructure gradient distribution in machined surface induced by high speed machining through a coupled FE and CA approach. Mater Design 196:109133. https://doi.org/10.1016/j.matdes.2020.109133

    Article  CAS  Google Scholar 

  37. Liu YX, Lin Y, Li HB, Wen DX, Chen XM, Chen MS (2015) Study of dynamic recrystallization in a Ni-based superalloy by experiments and cellular automaton model. Mat Sci Eng A-Struct 626:432–440. https://doi.org/10.1016/j.msea.2014.12.092

    Article  CAS  Google Scholar 

  38. Li W, Chu ZB, Wang HZ, Su H, Xue C, Shuai MR, Li YG, Ma LF (2020) Growth Kinetics of three-dimensional grains based on cellular automata. Rare Metal Mat Eng 49(12):4088–4096

    CAS  Google Scholar 

  39. Yao Y, Sun C, Xiu S, Hong Y, Hou Z, Zou X (2022) Study on dynamic recrystallization-based microstructure evolution mechanism of 40Cr during strengthening grinding. J Mater Process Tech 309:117754. https://doi.org/10.1016/j.jmatprotec.2022.117754

    Article  CAS  Google Scholar 

  40. Chen F, Zhu H, Zhang H, Cui Z (2020) Mesoscale modeling of dynamic recrystallization: multilevel cellular automaton simulation framework. Metall Mater Trans A 51:1286–1303. https://doi.org/10.1007/s11661-019-05620-3

    Article  CAS  Google Scholar 

Download references

Funding

This project is supported by the National Natural Science Foundation of China (Grant No. 52175383 and Grant No. 51775101).

Author information

Authors and Affiliations

Authors

Contributions

Zhuangzhuang Hou: writing the original draft, coding, and conducting the experiment. Shichao Xiu: writing guidance, editing, and acquiring funding. Cong Sun: writing guidance, reviewing, and editing. Yuan Hong, Xiannan Zou, and Yunlong Yao: writing guidance, reviewing, and editing.

Corresponding author

Correspondence to Shichao Xiu.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Z., Xiu, S., Sun, C. et al. Microstructure modification of grain refinement for 304 stainless steel induced by pre-stress grinding and control. Int J Adv Manuf Technol 131, 2569–2582 (2024). https://doi.org/10.1007/s00170-023-11954-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11954-5

Keywords

Navigation