Skip to main content
Log in

Deposition strategies using arc oscillation to improve the fabrication of solids by wire arc additive manufacturing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This work investigates deposition strategies using arc oscillation to manufacture steel solids by wire arc additive manufacturing (WAAM) in order to avoid excessive grain growth, one of the main challenges in solid manufacturing by WAAM. The components were characterised morphologically, mechanically, metallurgically and in terms of material efficiency and geometric uniformity. The results show that the solids fabricated with arc oscillation resulted in an average grain size similar to the original base material or even smaller in completely continuous depositions, i.e. without idle time. The strategies can be used to produce solids without heat treatments or waiting time between layers, therefore increasing the deposition rate and reducing costs. Smaller oscillated beads generated solids with more uniform and accurate dimensions, showing better use of material and less material waste in the case of machining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Wankhede VA, Vinodh S (2022) Analysis of challenges of wire-arc additive manufacturing process in the context of Industry 4.0 using graph theory approach. Int J Adv Manuf Technol 123:1059–1078. https://doi.org/10.1007/s00170-022-10233-z

    Article  Google Scholar 

  2. Li Y, Su C, Zhu J (2022) Comprehensive review of wire arc additive manufacturing: hardware system, physical process, monitoring, property characterization, application and future prospects. Results Eng 13:100330. https://doi.org/10.1016/j.rineng.2021.100330

    Article  Google Scholar 

  3. Wu B, Pan Z, Ding D et al (2018) A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. J Manuf Process 35:127–139. https://doi.org/10.1016/j.jmapro.2018.08.001

    Article  Google Scholar 

  4. Singh S, Sharma SK, Rathod DW (2021) A review on process planning strategies and challenges of WAAM. Mater Today Proc 47:6564–6575. https://doi.org/10.1016/j.matpr.2021.02.632

    Article  Google Scholar 

  5. Colomo AG, Wood D, Martina F, Williams SW (2020) A comparison framework to support the selection of the best additive manufacturing process for specific aerospace applications. Int J Rapid Manuf 9:194. https://doi.org/10.1504/ijrapidm.2020.107736

    Article  Google Scholar 

  6. Yu Z, Pan Z, Ding D et al (2021) A practical fabrication strategy for wire arc additive manufacturing of metallic parts with wire structures. Int J Adv Manuf Technol 115:3197–3212. https://doi.org/10.1007/s00170-021-07375-x

    Article  Google Scholar 

  7. Kumar Sinha A, Pramanik S, Yagati KP (2022) Research progress in arc based additive manufacturing of aluminium alloys – a review. Meas J Int Meas Confed 200:111672. https://doi.org/10.1016/j.measurement.2022.111672

    Article  Google Scholar 

  8. Campatelli G, Campanella D, Barcellona A et al (2020) Microstructural, mechanical and energy demand characterization of alternative WAAM techniques for Al-alloy parts production. CIRP J Manuf Sci Technol 31:492–499. https://doi.org/10.1016/j.cirpj.2020.08.001

    Article  Google Scholar 

  9. Kou S, Le Y (1985) Alternating grain orientation and weld solidification cracking. Metall Trans A 16:1887–1896. https://doi.org/10.1007/BF02670376

    Article  Google Scholar 

  10. Kou S, Le Y (1985) Grain structure and solidification cracking in oscillated arc welds of 5052 aluminum alloy. Metall Trans A 16:1345–1352. https://doi.org/10.1007/BF02670338

    Article  Google Scholar 

  11. Nagasai BP, Malarvizhi S, Balasubramanian V (2022) Effect of welding processes on mechanical and metallurgical characteristics of carbon steel cylindrical components made by wire arc additive manufacturing (WAAM) technique. CIRP J Manuf Sci Technol 36:100–116. https://doi.org/10.1016/j.cirpj.2021.11.005

    Article  Google Scholar 

  12. Rafieazad M, Ghaffari M, Vahedi Nemani A, Nasiri A (2019) Microstructural evolution and mechanical properties of a low-carbon low-alloy steel produced by wire arc additive manufacturing. Int J Adv Manuf Technol 105:2121–2134. https://doi.org/10.1007/s00170-019-04393-8

    Article  Google Scholar 

  13. Yan Z, Yuan T, Chen S (2019) Microstructural refinement of 6061 and 5052 aluminium alloys by arc oscillation. Mater Sci Technol 35:1651–1655. https://doi.org/10.1080/02670836.2019.1636486

    Article  Google Scholar 

  14. Yuan T, Luo Z, Kou S (2016) Grain refining of magnesium welds by arc oscillation. Acta Mater 116:166–176. https://doi.org/10.1016/j.actamat.2016.06.036

    Article  Google Scholar 

  15. Lin Z, Song K, Yu X (2021) A review on wire and arc additive manufacturing of titanium alloy. J Manuf Process 70:24–45. https://doi.org/10.1016/j.jmapro.2021.08.018

    Article  Google Scholar 

  16. Zhuo Y, Yang C, Fan C et al (2021) Grain refinement of wire arc additive manufactured titanium alloy by the combined method of boron addition and low frequency pulse arc. Mater Sci Eng A 805:140557. https://doi.org/10.1016/j.msea.2020.140557

    Article  Google Scholar 

  17. Pattanayak S, Sahoo SK (2021) Gas metal arc welding based additive manufacturing—a review. CIRP J Manuf Sci Technol 33:398–442. https://doi.org/10.1016/j.cirpj.2021.04.010

    Article  Google Scholar 

  18. Sokoluk M, Cao C, Pan S, Li X (2019) Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075. Nat Commun 10:98. https://doi.org/10.1038/s41467-018-07989-y

    Article  Google Scholar 

  19. Chi Y, Pan S, Liese M et al (2023) Wire-arc directed energy deposition of aluminum alloy 7075 with dispersed nanoparticles. J Manuf Sci Eng 145:1–8. https://doi.org/10.1115/1.4056257

    Article  Google Scholar 

  20. Sokoluk M, Yuan J, Pan S, Li X (2021) Nanoparticles enabled mechanism for hot cracking elimination in aluminum alloys. Metall Mater Trans A 52:3083–3096. https://doi.org/10.1007/s11661-021-06302-9

    Article  Google Scholar 

  21. Zheng T, Pan S, Liu J et al (2023) Study on nano-treating of Al-Mg-Si-Cu alloys with TiC nanoparticles. J Alloys Compd 947:169405. https://doi.org/10.1016/j.jallcom.2023.169405

    Article  Google Scholar 

  22. Chen W, Chen Y, Zhang T et al (2020) Effect of ultrasonic vibration and interpass temperature on microstructure and mechanical properties of Cu-8Al-2Ni-2Fe-2Mn alloy fabricated by wire arc additive manufacturing. Metals (Basel) 10:215. https://doi.org/10.3390/met10020215

    Article  Google Scholar 

  23. Ji F, Qin X, Hu Z et al (2022) Influence of ultrasonic vibration on molten pool behavior and deposition layer forming morphology for wire and arc additive manufacturing. Int Commun Heat Mass Transf 130:105789. https://doi.org/10.1016/j.icheatmasstransfer.2021.105789

    Article  Google Scholar 

  24. Xu X, Ganguly S, Ding J et al (2018) Enhancing mechanical properties of wire + arc additively manufactured INCONEL 718 superalloy through in-process thermomechanical processing. Mater Des 160:1042–1051. https://doi.org/10.1016/j.matdes.2018.10.038

    Article  Google Scholar 

  25. Colegrove PA, Coules HE, Fairman J et al (2013) Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling. J Mater Process Technol 213:1782–1791. https://doi.org/10.1016/j.jmatprotec.2013.04.012

    Article  Google Scholar 

  26. Bambach M, Sizova I, Sydow B et al (2020) Hybrid manufacturing of components from Ti-6Al-4V by metal forming and wire-arc additive manufacturing. J Mater Process Technol 282:116689. https://doi.org/10.1016/j.jmatprotec.2020.116689

    Article  Google Scholar 

  27. Duarte VR, Rodrigues TA, Schell N et al (2020) Hot forging wire and arc additive manufacturing (HF-WAAM). Addit Manuf 35:101193. https://doi.org/10.1016/j.addma.2020.101193

    Article  Google Scholar 

  28. Gou J, Wang Z, Hu S et al (2020) Effects of ultrasonic peening treatment in three directions on grain refinement and anisotropy of cold metal transfer additive manufactured Ti-6Al-4V thin wall structure. J Manuf Process 54:148–157. https://doi.org/10.1016/j.jmapro.2020.03.010

    Article  Google Scholar 

  29. Hao K, Li G, Gao M, Zeng X (2015) Weld formation mechanism of fiber laser oscillating welding of austenitic stainless steel. J Mater Process Technol 225:77–83. https://doi.org/10.1016/j.jmatprotec.2015.05.021

    Article  Google Scholar 

  30. Lara M, Díaz VV, Camus M, Da Cunha TV (2020) Effect of transverse arc oscillation on morphology, dilution and microstructural aspects of weld beads produced with short-circuiting transfer in GMAW. J Brazilian Soc Mech Sci Eng 42:449. https://doi.org/10.1007/s40430-020-02533-w

    Article  Google Scholar 

  31. Jiang Z, Chen X, Li H et al (2020) Grain refinement and laser energy distribution during laser oscillating welding of Invar alloy. Mater Des 186:108195. https://doi.org/10.1016/j.matdes.2019.108195

    Article  Google Scholar 

  32. Syed AK, Zhang X, Davis AE et al (2021) Effect of deposition strategies on fatigue crack growth behaviour of wire + arc additive manufactured titanium alloy Ti–6Al–4V. Mater Sci Eng A 814:141194. https://doi.org/10.1016/j.msea.2021.141194

    Article  Google Scholar 

  33. BS EN 10025-2 (2019) Hot rolled products of structural steels - part 2: technical delivery conditions for non-alloy structural steels. British Standards Institution, United Kingdom

    Google Scholar 

  34. Campatelli G, Venturini G, Grossi N et al (2021) Design and testing of a WAAM retrofit kit for repairing operations on a milling machine. Machines 9:322. https://doi.org/10.3390/machines9120322

    Article  Google Scholar 

  35. Baffa F, Venturini G, Campatelli G, Galvanetto E (2022) Effect of stepover and torch tilting angle on a repair process using WAAM. Adv Manuf. https://doi.org/10.1007/s40436-022-00393-2

  36. Glickstein SS, Friedman E (2011) Characterization and modeling of the heat source. In: Lienert T, Babu S, Siewert T, Acoff V (eds) ASM handbook - volume 6A: welding fundamentals and processes. ASM International, Materials Park, Ohio, USA, pp 35–42

    Google Scholar 

  37. Carvalho GHSFL, Venturini G, Campatelli G, Galvanetto E (2023) Development of optimal deposition strategies for cladding of Inconel 625 on carbon steel using wire arc additive manufacturing. Surf Coatings Technol 453:129128. https://doi.org/10.1016/j.surfcoat.2022.129128

    Article  Google Scholar 

  38. Richardson RW, DuPont JN, Farson DF et al (2001) Physics of welding. In: Jenney CL, O’Brien A (eds) AWS welding handbook – volume 1 - welding science and technology, 9th edn. American Welding Society, Miami, USA, pp 51–85

    Google Scholar 

  39. DuPont JN, Marder AR (1995) Thermal efficiency of arc welding processes. Weld J 74:406s–416s

    Google Scholar 

  40. Handbook ASM (2004) Volume 9 - metallography and microstructures, 10th edn. ASM International, Materials Park, Ohio, USA

    Google Scholar 

  41. Huang J, Liu G, Yu X et al (2022) Microstructure regulation of titanium alloy functionally gradient materials fabricated by alternating current assisted wire arc additive manufacturing. Mater Des 218:110731. https://doi.org/10.1016/j.matdes.2022.110731

    Article  Google Scholar 

  42. Caballero A, Ding J, Bandari Y, Williams S (2019) Oxidation of Ti-6Al-4V during wire and arc additive manufacture. 3D Print Addit Manuf 6:91–98. https://doi.org/10.1089/3dp.2017.0144

    Article  Google Scholar 

  43. Le VT, Mai DS, Doan TK, Paris H (2021) Wire and arc additive manufacturing of 308L stainless steel components: optimization of processing parameters and material properties. Eng Sci Technol an Int J 24:1015–1026. https://doi.org/10.1016/j.jestch.2021.01.009

    Article  Google Scholar 

  44. Wang Z, Zimmer-Chevret S, Léonard F, Abba G (2022) Improvement strategy for the geometric accuracy of bead’s beginning and end parts in wire-arc additive manufacturing (WAAM). Int J Adv Manuf Technol 118:2139–2151. https://doi.org/10.1007/s00170-021-08037-8

    Article  Google Scholar 

  45. Hu Z, Qin X, Shao T, Liu H (2018) Understanding and overcoming of abnormity at start and end of the weld bead in additive manufacturing with GMAW. Int J Adv Manuf Technol 95:2357–2368. https://doi.org/10.1007/s00170-017-1392-9

    Article  Google Scholar 

  46. Holliday DB, Dull RM, Hartman DK, Wright DA (2004) Gas metal arc welding. In: O’Brien A (ed) AWS welding handbook: volume 2 - welding processes, part 1, 9th edn. American Welding Society, Miami, USA, pp 147–207

    Google Scholar 

  47. Waqas A, Qin X, Xiong J et al (2019) Optimization of process parameters to improve the effective area of deposition in GMAW-based additive manufacturing and its mechanical and microstructural analysis. Metals (Basel) 9:775. https://doi.org/10.3390/met9070775

    Article  Google Scholar 

  48. Chernovol N, Sharma A, Tjahjowidodo T et al (2021) Machinability of wire and arc additive manufactured components. CIRP J Manuf Sci Technol 35:379–389. https://doi.org/10.1016/j.cirpj.2021.06.022

    Article  Google Scholar 

  49. Dong B, Cai X, Lin S, Fan C (2021) Microstructures and mechanical properties of wire arc additive manufactured 5183-Al: influences of deposition dimensions. CIRP J Manuf Sci Technol 35:744–752. https://doi.org/10.1016/j.cirpj.2021.08.014

    Article  Google Scholar 

  50. Tankova T, Andrade D, Branco R et al (2022) Characterization of robotized CMT-WAAM carbon steel. J Constr Steel Res 199:107624. https://doi.org/10.1016/j.jcsr.2022.107624

    Article  Google Scholar 

  51. Le VT, Mai DS, Hoang QH (2020) A study on wire and arc additive manufacturing of low-carbon steel components: process stability, microstructural and mechanical properties. J Brazilian Soc Mech Sci Eng 42:480. https://doi.org/10.1007/s40430-020-02567-0

    Article  Google Scholar 

  52. Ohring M (1995) How engineering materials are strengthened and toughened. In: Engineering materials science. Elsevier, pp 431–500

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Emanuele Galvanetto from the Department of Industrial Engineering (University of Florence) for his support in the microscopy experiments.

Author information

Authors and Affiliations

Authors

Contributions

Gustavo H.S.F.L. Carvalho: conceptualization, methodology, investigation, data analysis and writing—original draft. Gianni Campatelli: investigation, resources, writing (review and editing), supervision and project administration. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gustavo H.S.F.L. Carvalho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, G.H., Campatelli, G. Deposition strategies using arc oscillation to improve the fabrication of solids by wire arc additive manufacturing. Int J Adv Manuf Technol 128, 1559–1576 (2023). https://doi.org/10.1007/s00170-023-11912-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11912-1

Keywords

Navigation