Skip to main content
Log in

Tribological effects of micromilling of hardened AISI D2 steel on tool wear and top burr formation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The study of micromilling of quenched and tempered AISI D2 steel is of utmost importance due to the accelerated wear of the micromilling cutting tool edge that intensifies the formation of top burrs, which is detrimental to the micromilled surfaces because it requires further surface finishing. In this work, the effect of tooth feed per tooth and axial depth of cut on machining forces and top burr formation after dry micromilling of slots in quenched and tempered AISI D2 steel was evaluated. The results show that the passive force is approximately 32% higher than the radial and feed forces. Regarding burr formation, axial depth of cut was the most relevant parameter. Doubling axial depth of cut burr height increased by approximately 400%. Increasing feed per tooth reduces burr formation. The down cutting direction presented top burr heights approximately 23% higher when compared with up cutting. Attrition was the predominant tool wear mechanisms. Tool wear increases progressively with machining length raising the micromilling force components, which leads to rounding and increasing the radius of the cutting edge. Consequently, a negative rake angle is generated, inducing size effect and intensifying the material plowing mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Chen N, Li H, Wu J, Li Z, Li L, Liu G, He N (2021) Advances in micromilling: From tool fabrication to process outcomes. Int J Mach Tools Manuf 160. https://doi.org/10.1016/j.ijmachtools.2020.103670. Publisher Copyright: © 2020 Elsevier Ltd

  2. Mamedov A (2021) Micro milling process modeling: a review. Manufacturing Rev 8:3. https://doi.org/10.1051/mfreview/2021003

    Article  Google Scholar 

  3. Aramcharoen A, Mativenga PT, Yang S, Cooke KE, Teer DG (2008) Evaluation and selection of hard coatings for micro milling of hardened tool steel. Int J Mach Tools Manuf 48(14):1578–1584. https://doi.org/10.1016/j.ijmachtools.2008.05.011

    Article  Google Scholar 

  4. Beruvides G, No FC, Quiza R, Haber RE (2016) Surface roughness modeling and optimization of tungstencopper alloys in micro-milling processes. Measurement 86:246–252. https://doi.org/10.1016/j.measurement.2016.03.002

    Article  Google Scholar 

  5. Saedon JB, Soo SL, Aspinwall DK, Barnacle A (2012) Micro-milling of hardened aisi d2 tool steel. Adv Mater Res 445:62–67. https://doi.org/10.4028/www.scientific.net/amr.445.62

    Article  Google Scholar 

  6. Bodziak S, de Souza AF, Rodrigues AR, Diniz AE, Coelho RT (2014) Surface integrity of moulds for microcomponents manufactured by micromilling and electro-discharge machining. J Braz Soc Mech Sci Eng 36:623–635

    Google Scholar 

  7. Sredanovic B, Lakic GG, Kramar D, Kopac J (2016) Analysis of micro-milling of hardened tool steel in key engineering materials. Key Eng Mater 686:57–62. https://doi.org/10.4028/www.scientific.net/kem.686.57

    Article  Google Scholar 

  8. Câmara MA, Rubio JCC, Abrão AM, Davim JP (2012) State of the art on micromilling of materials, a review. J Mater Sci Technol 28(8):673–685. https://doi.org/10.1016/S1005-0302(12)60115-7

    Article  Google Scholar 

  9. Yuan Z, Fang B, Zhang Y, Wang F (2022) Effect of cutting parameters on chips and burrs formation with traditional micromilling and ultrasonic vibration assisted micromilling. Int J Adv Manuf Technol 119:1–14. https://doi.org/10.1007/s00170-021-08468-3

    Article  Google Scholar 

  10. Li P, Aristimuno P, Arrazola P, Hoogstrate AM, Oosterling JAJ, Langen HH, Schmidt RHM (2008) A study of factors affecting the performance of micro square endmills in milling of hardened tool steels. In: Proc 4th Int Conf Multi-Material Micro Manuf 2008:1–4

  11. Kang IS, Kim JS, Kim JH, Kang MC, Seo YW (2007) A mechanistic model of cutting force in the micro end milling process. J Mater Process Technol 187–188:250–255. https://doi.org/10.1016/j.jmatprotec.2006.11.155. (3rd International Conference on Advanced Forming and Die Manufacturing Technology)

    Article  Google Scholar 

  12. Sun H, Gao D, Zhao Z, Tang X (2017) An approach to in-process surface texture condition monitoring. Robot Comput-Integr Manuf 48:254–262. https://doi.org/10.1016/j.rcim.2017.05.001

    Article  Google Scholar 

  13. Bajpai V, Singh RK, Kushwaha AK (2013) Burr formation and surface quality in high speed micromilling of titanium alloy (Ti6Al4V). Int Manuf Sci Eng Conf Am Soc Mech Eng 2013:V002T03A017

    Google Scholar 

  14. Biermann D, Kahnis P (2010) Analysis and simulation of size effects in micromilling. Prod Eng Res Devel 4:25–34. https://doi.org/10.1007/s11740-009-0201-1

    Article  Google Scholar 

  15. Chen MJ, Ni HB, Wang ZJ, Jiang Y (2012) Research on the modeling of burr formation process in micro-ball end milling operation on Ti-6Al-4V. Int J Adv Manuf Technol 62(9–12):901–912. https://doi.org/10.1007/s00170-011-3865-6

    Article  Google Scholar 

  16. Gomes MC, Brito LC, da Silva MB, Viana Duarte MA (2021) Tool wear monitoring in micromilling using support vector machine with vibration and sound sensors. Precis Eng 67:137–151. https://doi.org/10.1016/j.precisioneng.2020.09.025

    Article  Google Scholar 

  17. Sorgato M, Bertolini R, Bruschi S (2020) On the correlation between surface quality and tool wear in micromilling of pure copper. J Manuf Process 50:547–560. https://doi.org/10.1016/j.jmapro.2020.01.015

    Article  Google Scholar 

  18. Bal’azs BZ, Geier N, Tak’acs M, Davim JP (2021) A review on micromilling: recent advances and future trends. Int J Adv Manuf Technol 112:655–684

    Article  Google Scholar 

  19. Silva LC, da Silva MB (2019) Investigation of burr formation and tool wear in micromilling operation of duplex stainless steel. Precis Eng 60:178–188. https://doi.org/10.1016/j.precisioneng.2019.08.006

    Article  Google Scholar 

  20. Kiswanto G, Zariatin D, Ko T (2015) The effect of spindle speed, feed-rate and machining time to the surface roughness and burr formation of aluminum alloy 1100 in micro-milling operation. J Manuf Process 16(4):435–450. https://doi.org/10.1016/j.jmapro.2014.05.003

    Article  Google Scholar 

  21. Wu X, Li L, He N, Yao C, Zhao M (2016) Influence of the cutting edge radius and the material grain size on the cutting force in micro cutting. Precis Eng 45:359–364. https://doi.org/10.1016/j.precisioneng.2016.03.012

    Article  Google Scholar 

  22. Biermann D, Steiner M (2012) Analysis of micro burr formation in austenitic stainless steel x5crni18-10. Procedia CIRP 3:97–102. https://doi.org/10.1016/j.procir.2012.07.018. (45th CIRP Conference on Manufacturing Systems 2012)

    Article  Google Scholar 

  23. Weule H, Hntrup V, Tritschler H (2001) Micro-cutting of steel to meet new requirements in miniaturization. CIRP Ann 50(1):61–64. https://doi.org/10.1016/S0007-8506(07)62071-X

    Article  Google Scholar 

  24. Pratap T, Patra K, Dyakonov AA (2015) Modeling cutting force in micromilling of ti-6al-4v titanium alloy. Proc Eng 129:134–139. https://doi.org/10.1016/j.proeng.2015.12.021. (International Conference on Industrial Engineering (ICIE-2015))

    Article  Google Scholar 

  25. Yun HT, Heo S, Lee MK, Min B-K, Lee SJ (2011) Ploughing detection in micromilling processes using the cutting force signal. Int J Mach Tools Manuf 51(5):377–382. https://doi.org/10.1016/j.ijmachtools.2011.01.003

    Article  Google Scholar 

  26. Bal’azs BZ, Geier N, Tak’acs M, Davim JP (2021) A review on micromilling: recent advances and future trends. Int J Adv Manuf Technol 112(3):655–684. https://doi.org/10.1007/s00170-020-06445-w

    Article  Google Scholar 

  27. Gao Q, Guo G-Y, Cai M (2021) Wear mechanism and experimental study of a tool used for micro-milling single-crystal nickel-based superalloys. Int J Adv Manuf Technol 113:117–129

    Article  Google Scholar 

  28. Ziberov M, da Silva MB, Jackson M, Hung WNP (2016) Effect of cutting fluid on micromilling of ti-6al-4v titanium alloy. Proc Manuf 5:332–347. https://doi.org/10.1016/j.promfg.2016.08.029. (44th North American Manufacturing Research Conference, NAMRC 44, June 27-July 1, 2016, Blacksburg, Virginia, United States)

    Article  Google Scholar 

  29. Torkamani H, Raygan S, Rassizadehghani J (2014) Comparing microstructure and mechanical properties of aisi d2 steel after bright hardening and oil quenching. Mater Des 1980–2015(54):1049–1055. https://doi.org/10.1016/j.matdes.2013.09.043

    Article  Google Scholar 

  30. Roberts G, Krauss G, Kennedy R (1998) Tool Steels, 5th edn. ASM International, Ohio. https://doi.org/10.31399/asm.tb.ts5.9781627083584

  31. Son SM, Lim HS, Ahn JH (2005) Effects of the friction coefficient on the minimum cutting thickness in micro cutting. Int J Mach Tools Manuf 45(4):529–535. https://doi.org/10.1016/j.ijmachtools.2004.09.001

    Article  Google Scholar 

  32. G99–05 A (2010) Standard test method for wear testing with a pin-on-disk apparatus. Am Soc Testing Mater 1–6. https://doi.org/10.1520/G0099-17

  33. Zel T (2006) The influence of friction models on finite element simulations of machining. Int J Mach Tools Manuf 46(5):518–530. https://doi.org/10.1016/j.ijmachtools.2005.07.001

    Article  Google Scholar 

  34. Câmara MA, Abrão AM, Rubio JCC, Godoy GCD, Cordeiro BS (2016) Determination of the critical undeformed chip thickness in micromilling by means of the acoustic emission signal. Precis Eng 46:377–382. https://doi.org/10.1016/j.precisioneng.2016.06.007

    Article  Google Scholar 

  35. Blau PJ (2008) Friction Science and Technology: from Concepts to Applications. CRC Press

    Book  Google Scholar 

  36. Malayath G, Sidpara AM, Deb S (2020) Study of different materials response in micro milling using four edged micro end mill tools. J Manuf Process 56:169–179. https://doi.org/10.1016/j.jmapro.2020.04.079

    Article  Google Scholar 

  37. Medeossi F, Sorgato M, Bruschi S, Savio E (2018) Novel method for burrs quantitative evaluation in micro-milling. Precis Eng 54:379–387. https://doi.org/10.1016/j.precisioneng.2018.07.007

    Article  Google Scholar 

  38. Hajiahmadi S (2019) Burr size investigation in micro milling of stainless steel 316l. Int J Light Mater Manuf 2(4):296–304. https://doi.org/10.1016/j.ijlmm.2019.07.004. (Research progress on subtractive and additive manufacturing)

    Article  Google Scholar 

  39. Piquard R, Dacunto A, Laheurte P, Dudzinski D (2014) Micro-end milling of niti biomedical alloys, burr formation and phase transformation. Precision Engineering 38(2):356–364. https://doi.org/10.1016/j.precisioneng.2013.11.006

    Article  Google Scholar 

  40. Ucun I, Aslantas K, Bedir F (2015) Technical note. Precis Eng 41(1):135–144. https://doi.org/10.1016/j.precisioneng.2015.01.002

    Article  Google Scholar 

  41. Gao S, Pang S, Jiao L, Yan P, Luo Z, Yi J, Wang X (2017) Research on specific cutting energy and parameter optimization in micro-milling of heat-resistant stainless steel. Int J Adv Manuf Technol 89(1–4):191–205. https://doi.org/10.1007/s00170-016-9062-x

    Article  Google Scholar 

  42. Filiz S, Conley CM, Wasserman MB, Ozdoganlar OB (2007) An experimental investigation of micro-machinability of copper 101 using tungsten carbide micro-endmills. Int J Mach Tools Manuf 47(7):1088–1100. https://doi.org/10.1016/j.ijmachtools.2006.09.024

    Article  Google Scholar 

  43. Aramcharoen A, Mativenga PT (2009) Size effect and tool geometry in micromilling of tool steel. Precis Eng 33(4):402–407. https://doi.org/10.1016/j.precisioneng.2008.11.002

    Article  Google Scholar 

  44. Mathai G, Melkote S, Rosen D (2012) Effect of machining parameters on burr size of micromilled foils. In: Proceedings of the 7th International Conference on MicroManufacturing, pp. 11–14

  45. Wu Y, Chen N, Bian R, He N, Li Z, Li L (2020) Investigations on burr formation mechanisms in micro milling of high-aspect-ratio titanium alloy ti-6al-4v structures. Int J Mech Sci 185:105884. https://doi.org/10.1016/j.ijmecsci.2020.105884

    Article  Google Scholar 

  46. Mhamdi MB, Salem SB, Boujelbene M, Bayraktar E (2013) Experimental study of the chip morphology in turning hardened aisi d2 steel. J Mech Sci Technol 27:3451–3461

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Graduate Program in Mechanical Engineering, Universidade Federal de Minas Gerais and the Brazilian research agencies CAPES, CNPq, and FAPEMIG for financial support.

Funding

This study was partly financed in part by the Coordenao de Aperfeioamento de Pessoal de Nvel Superior — Brasil (CAPES) — Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Anderson Júnior dos Santos performed the micromilling test, scanning electron microscopy, and profilometry tests and wrote the main text. Bárbara Cristina Mendanha Reis editing and proofreading the article, Natália Fernanda Santos Pereira contributed to the data analysis, Diogo Azevedo de Oliveira article review, Alexandre Mendes Abrão article review, Juan Carlos Campos Rubio article review, and Marcelo Araújo Câmara is the leader of the research team and contributed to the analysis of the results and review of the article.

Corresponding author

Correspondence to Anderson Júnior dos Santos.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All the authors consent to participate in this research.

Consent for publication

The authors give full consent to the publisher for the publication of this work.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, A.J., Reis, B.C.M., Pereira, N.F.S. et al. Tribological effects of micromilling of hardened AISI D2 steel on tool wear and top burr formation. Int J Adv Manuf Technol 127, 5327–5341 (2023). https://doi.org/10.1007/s00170-023-11819-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11819-x

Keywords

Navigation