Skip to main content
Log in

Design and application of laser scanning strategy for machining deep surface grooves with a continuous-wave fiber laser

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A laser scanning strategy for fabricating deep surface grooves using a continuous-wave fiber laser was investigated in this study. Because the low productivity of short-pulsed-wave lasers limits their application to a small scale, a continuous-wave (CW) fiber laser that can provide a high power density was used for the rapid fabrication of deep grooves. An innovative tailored laser scanning strategy of fabricating patterned deep grooves was analytically designed based on the power density and interaction time. Considering the thermophysical properties of the material, controlled laser processing parameters were determined for fabricating surface grooves with rectangular and chevron cross-sectional patterns. To confirm the usefulness of the research results, the scanning strategy obtained in this study was applied for achieving high-quality joining between injection-molded metal–plastic hybrids (MPHs). A deep-surface-grooved A5052 aluminum alloy sheet was bonded to two plastics, polyamide and polypropylene, via injection molding. Lap shear tensile tests of the MPHs revealed their significantly enhanced joining strength owing to a better mechanical interlocking of the groove. The developed laser scanning strategy using a CW fiber laser can be widely applied in the fabrication of deep grooves of various cross-sections with high reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

a :

Thermal diffusivity, m2s−1

A m :

Grooved cross-sectional area in the scanning direction, mm2

C p(l):

Specific heat capacity of a liquid phase at constant pressure, J/kg K

C p(s):

Specific heat capacity of a solid phase at constant pressure, J/kg K

E :

Power density, W/mm2

E a :

Absorbed power density from a laser source, W/mm2

E m :

Unit energy for the grooving, J/mm3

E n :

Net heat energy, J

dE n/dt :

Rate of heat energy delivered, J/s or W

E p :

Analytically required power density for grooving, W/mm2

L m :

Heat of fusion, kJ/kg

L v :

Heat of vaporization, kJ/kg

P :

Laser power, J/s or W

r B :

Beam radius, mm

T m :

Melting temperature, K

T o :

Room temperature, K

T p :

Peak temperature, K

T v :

Vaporization temperature, K

V :

Removed volume, mm3

v:

Laser beam moving rate, mm/s

dV/dt :

Removal volume rate, mm3/s

α:

Linear expansion coefficient, K−1

η :

Grooving efficiency

λ:

Thermal conductivity, Js−1m−1K−1

ρ:

Density, kg/m3

τ :

Beam interaction time, s

References

  1. Liu X, Wang J, Bu H, Wang F, Zhan X (2022) Effect of groove configuration on mechanical properties and fracture behavior of 6061 Al alloy and CFRTP laser joint. Int J Adv Manuf Technol 123:1913–1924. https://doi.org/10.1007/s00170-022-10276-2

    Article  Google Scholar 

  2. Rodríguez-Vidal E, Sanz C, Lambarri J, Quintana I (2018) Experimental investigation into metal micro-patterning by laser on polymer-metal hybrid joining. Opt Laser Technol 104:73–82. https://doi.org/10.1016/j.optlastec.2018.02.003

    Article  Google Scholar 

  3. Dunn A, Carstensen JV, Wlodarczyk KL, Hansen EB (2014) Nanosecond laser texturing for high friction applications. Opt. Laser Eng 62:9–16. https://doi.org/10.1016/j.optlaseng.2014.05.003

    Article  Google Scholar 

  4. Hou Z, Yao Z, Sun Y, Shen H (2022) Grooving profile control for structured grinding wheels with picosecond pulsed laser. Int J Adv Manuf Technol 119:5851–5862. https://doi.org/10.1007/s00170-022-08655-w

    Article  Google Scholar 

  5. Sakai T, Okamoto Y, Katayama C, Imai H, Okada A (2020) High-speed micro-grooving of metal by angled irradiation of single-mode CW fiber laser. Appl Sci 10:8333. https://doi.org/10.3390/app10238333

    Article  Google Scholar 

  6. Lopez J, Mincuzzi G, Devillard R, Zaouter Y, Hönninger C, Mottay E, Kling R (2015) Ablation efficiency of high average power ultrafast laser. J Laser Appl 27:S28008. https://doi.org/10.2351/1.4906479

    Article  Google Scholar 

  7. Loeschner U, Schille J, Streek A, Knebel T, Hartwig L, Hillmann R, Endisch C (2015) High-rate laser microprocessing using a polygon scanner system. J Laser Appl 27:S29303. https://doi.org/10.2351/1.4906473

    Article  Google Scholar 

  8. Finger J, Hesker M (2021) High power ultrashort pulse laser processing using a flexible multibeam approach. J Phys Photonics 3:021004. https://doi.org/10.1088/2515-7647/abf24f

    Article  Google Scholar 

  9. Rodríguez-Vidal E, Sanz C, Etxarri J, Bejarano A, Lebour Y, Malet R (2018) Modification of ABS wetting properties by ultrashort and short pulse lasers. Procedia CIRP 74:568–572. https://doi.org/10.1016/j.procir.2018.08.085

    Article  Google Scholar 

  10. Straeten K, Nottrodt O, Zuric M, Olowinsky A, Abels P, Gillner A (2018) Polygon scanning system for high-power, high-speed microstructuring. Procedia CIRP 74:491–494. https://doi.org/10.1016/j.procir.2018.08.137

    Article  Google Scholar 

  11. Ion J (2005) Laser processing of engineering materials: principles, procedure and industrial application. Butterworth-Heinemann, Oxford

    Google Scholar 

  12. Chryssolouris G (1991) Laser machining—theory and practice. Springer-Verlag, New York

    Book  Google Scholar 

  13. Parandoush P, Hossain A (2014) A review of modeling and simulation of laser beam machining. Int J Mach Tools Manuf 85:135–145. https://doi.org/10.1016/j.ijmachtools.2014.05.008

    Article  Google Scholar 

  14. Melkote S, Liang S, Özel T, Jawahir IS, Stephenson DA, Wang B (2022) 100th anniversary issue of the manufacturing engineering division paper a review of advances in modeling of conventional machining processes: from merchant to the present. J Manuf Sci Eng 144:110801. https://doi.org/10.1115/1.4053522

    Article  Google Scholar 

  15. Genna S, Lambiase F, Ponticelli GS (2020) Fuzzy decision-making in laser-assisted joining of polymer-metal hybrid structures. Int J Adv Manuf Technol 108:61–72. https://doi.org/10.1007/s00170-020-05379-7

    Article  Google Scholar 

  16. Martinsen K, Hu SJ, Carlson BE (2015) Joining of dissimilar materials. CIRP Ann Manuf Technol 64:679–699. https://doi.org/10.1016/j.cirp.2015.05.006

    Article  Google Scholar 

  17. Izadi O, Silani M, Mosaddegh P, Farzin M (2018) Warpage and bending behavior of polymer–metal hybrids: experimental and numerical simulations. Int J Adv Manuf Technol 98:873–885. https://doi.org/10.1007/s00170-018-2226-0

    Article  Google Scholar 

  18. Grujicic M, Sellappan V, Kotrika S, Arakere G, Obieglo A, Erdmann M, Holzleitner J (2009) Suitability analysis of a polymer–metal hybrid technology based on high-strength steels and direct polymer-to-metal adhesion for use in load-bearing automotive body-in-white applications. J Mater Process Technol 209:1877–1890. https://doi.org/10.1016/j.jmatprotec.2008.04.050

    Article  Google Scholar 

  19. Han SW, Kim D, Abolhasani D, VanTyne CJ, Moon YH (2022) Joining of metal–plastic composite layered tubes by hydroformed threaded coupling. J Manuf Sci Eng 144:111009. https://doi.org/10.1115/1.4054870

    Article  Google Scholar 

  20. Trask RS, Hallett SR, Helenon FMM, Wisnom MR (2012) Influence of process induced defects on the failure of composite T-joint specimens. Compos Part A Appl Sci Manuf 43:748–757. https://doi.org/10.1016/j.compositesa.2011.12.021

    Article  Google Scholar 

  21. Khosravani MR, Anders D, Weinberg K (2019) Influence of strain rate on fracture behavior of sandwich composite T-joints. Eur J Mech A Solids 78:103821. https://doi.org/10.1016/j.euromechsol.2019.103821

    Article  MATH  Google Scholar 

  22. Lambiase F, Scipioni SI, Lee CJ, Ko DC, Liu FA (2021) State-of-the-art review on advanced joining processes for metal-composite and metal-polymer hybrid structures. Materials 14:1890. https://doi.org/10.3390/ma14081890

    Article  Google Scholar 

  23. Varis J (2006) Ensuring the integrity in clinching process. J Mater Process Technol 174:277–285. https://doi.org/10.1016/j.jmatprotec.2006.02.001

    Article  Google Scholar 

  24. Li D, Han L, Thornton M, Shergold M (2012) Influence of edge distance on quality and static behaviour of self-piercing riveted aluminium joints. Mater Des 34:22–31. https://doi.org/10.1016/j.matdes.2011.07.046

    Article  Google Scholar 

  25. Borba NZ, Blaga L, Dos Santos JF, Amancio-Filho ST (2018) Direct-friction riveting of polymer composite laminates for aircraft applications. Mater Lett 215:31–34. https://doi.org/10.1016/j.matlet.2017.12.033

    Article  Google Scholar 

  26. Lambiase F, Grossi V, Paoletti A (2020) Friction stir joining of CFRP laminates with amorphous polymers: influence of processing speeds. J Manuf Process 55:186–197. https://doi.org/10.1016/j.jmapro.2020.03.029

    Article  Google Scholar 

  27. Honkanen M, Hoikkanen M, Vippola M, Vuorinen J, Lepistö T (2009) Metal–plastic adhesion in injection-molded hybrids. J Adhes Sci Technol 23:1747–1761. https://doi.org/10.1163/016942409X12489445844435

    Article  Google Scholar 

  28. Lucchetta G, Marinello F, Bariani PF (2011) Aluminum sheet surface roughness correlation with adhesion in polymer metal hybrid overmolding. CIRP Ann Manuf Technol 60:559–562. https://doi.org/10.1016/j.cirp.2011.03.073

    Article  Google Scholar 

  29. Fasasi AY, Mwenifumbo S, Rahbar N, Chen J, Li M, Beye AC, Arnold CB, Soboyejo WO (2009) Nano-second UV laser processed micro-grooves on Ti6Al4V for biomedical applications. Mater Sci Eng C 29:5–13. https://doi.org/10.1016/j.msec.2008.05.002

    Article  Google Scholar 

  30. Amend P, Pfindel S, Schmidt M (2013) Thermal joining of thermoplastic metal hybrids by means of mono- and polychromatic radiation. Phys Procedia 41:98–105. https://doi.org/10.1016/j.phpro.2013.03.056

    Article  Google Scholar 

  31. Huang B, Sun L, Li L, Zhang L, Lin Y, Che J (2017) Experimental investigation of the strength of polymer-steel direct adhesion (PSDA) joints with micro-structures ablated by laser. J Mater Process Technol 249:407–414. https://doi.org/10.1016/j.jmatprotec.2017.06.031

    Article  Google Scholar 

  32. Ashby MF, Easterling KE (1982) A first report on diagrams for grain growth in welds. Acta Metall Mater 30:1969–1978. https://doi.org/10.1016/0001-6160(82)90100-6

    Article  Google Scholar 

  33. Bass M (1983) Laser heating of solids. In: Physical processes in laser-materials interactions. Plenum Press, New York

    Google Scholar 

  34. Klemens PG (1976) Heat balance and flow conditions for electron beam and laser welding. Int J Appl Phys 47:2165–2174. https://doi.org/10.1063/1.322866

    Article  Google Scholar 

  35. Ion JC, Shercliff HR, Ashby MF (1992) Diagrams for laser materials processing. Acta Metall 40:1539–1551. https://doi.org/10.1016/0956-7151(92)90097-X

    Article  Google Scholar 

  36. Weber R, Graf T, Berger P, Onuseit V, Wiedenmann M, Freitag C, Feuer A (2014) Heat accumulation during pulsed laser materials processing. Opt Express 22:28232–28233. https://doi.org/10.1364/OE.22.011312

    Article  Google Scholar 

  37. Schneider F, Wolf N, Petring D (2013) High power laser cutting of fiber reinforced thermoplastic polymers with cw- and pulsed lasers. Phys Procedia 41:415–420. https://doi.org/10.1016/j.phpro.2013.03.096

    Article  Google Scholar 

  38. Weber R, Graf T, Freitag C, Feuer A, Kononenko T, Konov V (2017) Processing constraints resulting from heat accumulation during pulsed and repetitive laser materials processing. Opt Express 25:3966–3979. https://doi.org/10.1364/OE.25.003966

    Article  Google Scholar 

  39. Apostolos F, Panagiotis S, Konstantinos S, Chryssolouris G (2012) Energy efficiency assessment of laser drilling process. Physics Procedia 39:776–783. https://doi.org/10.1016/j.phpro.2012.10.100

    Article  Google Scholar 

  40. Hwang TW, Han SW, Lee T, Kim JH, VanTyne CJ, Moon YH (2020) Underwater surface remelting of selective laser melted titanium parts. J Mater Res Technol 9:10447–10458. https://doi.org/10.1016/j.jmrt.2020.07.060

    Article  Google Scholar 

  41. Ilavarsan PM, Molian PA (1995) Laser cutting of thick sectioned steels using gas flow impingement on the erosion front. J Laser Appl 7:199–209. https://doi.org/10.2351/1.4745395

    Article  Google Scholar 

Download references

Funding

This work was supported by a Korea Basic Science Institute (National Research Facilities and Equipment Center) grant, funded by the Ministry of Education. (Grant No. 2021R1A6C101A449).

Author information

Authors and Affiliations

Authors

Contributions

SQ Liu: investigation and writing—original draft. SW Han: investigation and methodology. TW Hwang: investigation and data curation. D Abolhasani: validation. YH Moon: supervision, project administration, and writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Young Hoon Moon.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S.Q., Han, S.W., Hwang, T.W. et al. Design and application of laser scanning strategy for machining deep surface grooves with a continuous-wave fiber laser. Int J Adv Manuf Technol 127, 4133–4147 (2023). https://doi.org/10.1007/s00170-023-11759-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11759-6

Keywords

Navigation