Skip to main content
Log in

A novel geometric error compensation method for improving machining accuracy of spiral bevel gear based on inverse kinematic model

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The geometric errors (GEs) of the spiral bevel gear milling machine will seriously affect the machining accuracy of the tooth surface and need to be compensated. In this paper, an innovative method for compensating the geometric error of CNC gear milling machine is proposed. This method describes the explicit relationship between the motion axis of the machine tool and the geometric errors, realizes the dynamic compensation by tooth, and improves the machining accuracy and machining efficiency of the tooth surface. Firstly, the actual forward kinematics model (FKM) is constructed based on the geometric errors module, and the error tooth surface with GEs is established. Secondly, the corresponding relationship between the machine setting parameters of the spiral bevel gear universal generation machine (UGM) and the CNC machine tool motion axis is given, and then the functional expression between the motion axis with geometric errors and the machine setting parameters is established, which is the inverse kinematics model (IKM). Then, the tooth surface error correction model is established according to the relationship between the machine setting parameters and the tooth surface errors. The compensation amount of the machine setting parameters obtained by the model is introduced into the IKM to obtain the GEs compensation model. Finally, the effectiveness of the geometric error compensation technique is verified by numerical analysis and experiments. The results show that the tooth surface errors, contact stress, and loaded transmission error after geometric errors compensation are significantly reduced, and the contact pattern meets the design requirements, which verifies the feasibility and effectiveness of the geometric errors compensation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

GEs:

Geometric errors

FKM:

Forward kinematic model

UGM:

Universal generation model

IKM:

Inverse kinematic model

PIGEs:

Position-independent geometric errors

PDGEs:

Position-dependent geometric errors

X,Y,Z,A,B,C:

CNC machine tool shaft

\(\epsilon _k(I),\delta _k(I)\) :

PDGEs (\(k=x,y,z\);\(I=A,\) BXYZ)

\(\gamma _{XZ}\) :

Verticality error of X-axis relative to Z-axis

\(\gamma _{YX},\gamma _{YZ}\) :

Verticality error of Y-axis relative to Z-axis and X-axis

\(\alpha _{AX},\beta _{AY}\) :

Verticality error of A-axis relative to X-axis and Y-axis

\(\alpha _{BX},\beta _{BZ}\) :

Verticality error of B-axis relative to X-axis and Z-axis

\(\delta _{AX},\delta _{AY}\) :

Position error of A-axis relative to X-axis and Y-axis

\(\delta _{BX},\delta _{BZ}\) :

Position error of B-axis relative to X-axis and Z-axis

\({\varvec{M}}_{DI}\) :

Transformation matrix from I-axis to D-axis(\(D=A,B,X,Y,Z,R\); \(I=A,B,X,Y,Z,W\))

\(\varvec{e}\) :

GEs

\(u_k,\theta _k\) :

Gaussian coordinate parameters of cutter tool

\(\varvec{r}_i(i\!=\!T,k,e,w)\) :

Tooth surface position vector(cutter tool,\(i=T,k\); by FKM,\(i=e\); by UGM,\(i=w\))

\(\varvec{n}_i(i\!=\!T,k,e,w)\) :

Tooth surface unit normal vector(cutter tool,\(i=T,k\); by FKM, \(i=e\); by UGM,\(i=w\))

\(\varvec{v}^{eT},\varvec{v}^{wk}\) :

Relative speed between tool and tooth surface

\(R_c\) :

Cutter tip radius

\(\alpha _c\) :

Profile angle

\(\rho _c\) :

Tip transition filet radius

\(\lambda _c\) :

Tip transition filet arc angle

\(q_0\) :

Angular tool position

\(S_0\) :

Radial tool position

\(R_a\) :

Roll ratio

E :

Vertical wheel position

\(X_p\) :

Axial wheel position

\(X_b\) :

Bed position

\(\delta _m\) :

Machine pitch angle

\(\varvec{P}\) :

Machine setting parameter vector

\(\phi _i(i=c,w)\) :

Rotation angle of production wheel (\(i\!=\!c\)) and workpiece gear(\(i\!=\!w\))

\(\varvec{M}_{wk}\) :

Transformation matrix from tool coordinate system to gear coordinate system

\(\varvec{d}\) :

Error vector between GEs tooth surface and design tooth surface

h :

Tooth surface error in normal direction

S :

Sensitivity matrix

\(\Delta P\) :

Machine setting parameter correction value

References

  1. Litvin FL, Fuentes A (2004) Gear geometry and applied theory. In: Cambridge University Press. https://doi.org/10.1016/0094-114X(95)90001-4

  2. John AA, Alfonso FB, Litvin FL (2002) Computerized integrated approach for design and stress analysis of spiral bevel gears. Comput Methods Appl Mech Eng 191(11–12):1057–1095. https://doi.org/10.1016/S0045-7825(01)00316-4

    Article  MATH  Google Scholar 

  3. Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation of machines-an update. CIRP Ann Manuf Technol 57:660–75. https://doi.org/10.1016/j.cirp.2008.09.008

    Article  Google Scholar 

  4. Eastwood S, Webb P (2009) Compensation of thermal deformation of a hybrid parallel kinematic machine. Robot Comput Integr Manuf 25:81–90. https://doi.org/10.1016/j.rcim.2007.10.001

    Article  Google Scholar 

  5. Benardos PG, Mosialos S, Vosniakos GC (2006) Prediction of workpiece elastic deflections under cutting forces in turning. Robot Comput Integr Manuf 22:505–14. https://doi.org/10.1016/j.rcim.2005.12.009

    Article  Google Scholar 

  6. Wan M, Dang XB, Zhang WH, Yang Y (2018) Optimization and improvement of stable processing condition by attaching additional masses for milling of thin-walled workpiece. Mech Syst Signal Process 103:196–215. https://doi.org/10.1016/j.ymssp.2017.10.008

    Article  Google Scholar 

  7. Ouyang PR, Pano V, Tang J, Yue WH (2018) Position domain nonlinear PD control for contour tracking of robotic manipulator. Robot Comput Integr Manuf 51:14–24. https://doi.org/10.1016/j.rcim.2017.11.017

    Article  Google Scholar 

  8. Sheng BH, Tang H (1997) Comprehensive dynamic compensation technique for errors in CNC machine tool. Manufacturing Technology and Machine Tool 06:19–21

    Google Scholar 

  9. Wei W (2011) Study on the precision design method of screw cone gear milling machine for gear transmission performance. Dissertation. Tianjin University

  10. Abbaszadeh-Mir Y, Mayer JRR, Cloutier G, Fortin C (2002) Theory and simulation for the identification of the link geometric errors for a five-axis machine tool using a telescoping magnetic ball-bar. Int J Prod Res 40:4781–97. https://doi.org/10.1080/00207540210164459

    Article  MATH  Google Scholar 

  11. Shih YP (2007) Flank modification methodology for face-hobbing hypoid gears based on ease-off topography. J Mech Des 129(12):1294–1302. https://doi.org/10.1115/1.2779889

    Article  Google Scholar 

  12. Shih YP, Fong ZH (2008) Flank correction for spiral bevel and hypoid gears on a six-axis CNC hypoid generator. J Mech Des 130(6):062604. https://doi.org/10.1115/1.2890112

  13. Shih YP (2010) A novel ease-off flank modification methodology for spiral bevel and hypoid gears. Mech Mach Theory 45(8):1108–1124. https://doi.org/10.1016/j.mechmachtheory.2010.03.010

    Article  MATH  Google Scholar 

  14. Tang JY, Lei GW (2010) Study on effect of CNC machine motion errors on tooth contact analysis of spiral bevel gears. Chinese Journal of Construction Machinery 21(20):2395–2402. https://doi.org/10.1016/S1875-5372(10)60130-0

    Article  Google Scholar 

  15. Tang JY, Lu YF, Zhou C (2008) Error tooth contact analysis of spiral bevel gears transmission. Chin J Mech Eng 44(7):16–23. https://doi.org/10.3901/JME.2008.07.016

    Article  Google Scholar 

  16. Tang JY, Li YY, Zhou C, Lu YF (2009) Relation between CNC bevel gear generator spatial errors and machine setting errors. Chin J Mech Eng 45(4):148–154. https://doi.org/10.3901/JME.2009.04.148

    Article  Google Scholar 

  17. Tang JY, Wang ZQ, Li YY (2011) Axis-motion formulas of free-form machine tool solved by optimization algorithm and it’s influence on tooth-surface error. Journal of National University of Defense Technology 33(5):64–68

    Google Scholar 

  18. Ming XZ, Li MD, Li Wang W, Zhao L (2015) Analysis of the error sensitive direction and establishment of the equation of face gear tooth surface with error. Journal of Mechanical Transmission 39(5):1–6. https://doi.org/10.16578/j.issn.1004.2539.2015.05.008

  19. Zhou BC, Li MD, Li Wang W, Zhao L (2017) Research on geometric error theory and compensation method for large CNC gear profile grinding machine tools. Dissertation. Chongqing University

  20. Ding H, Tang JY, Zhong J (2016) Research on geometric error theory and compensation method for large CNC gear profile grinding machine tools. Mech Mach Theory 99:155–175. https://doi.org/10.1016/j.mechmachtheory.2016.01.008

    Article  Google Scholar 

  21. Wang Y, Chu X, Su G, Zhao W, He Y, Feng B, Liu B, Yang L, Feng M (2016) Impact of machine error on the gear tooth surface shape of face gear. J Beijing Univ Technol 44(07):1017–1023. https://doi.org/10.11936/bjutxb2017080019

  22. Xing Y, Zhang JX, Zhang LH, He BY (2014) Error compensation algorithm to spiral bevel gear precise numerical controlled(NC) machining. China Mechanical Engineering 25(18):2427–2431+2438. https://doi.org/10.3969/j.issn.1004-132X.2014.18.003

  23. Xing Y, Zhang LH, He BY, Wang SX (2014) Precision reverse design of numerical controlled(NC) machine on the basis of multibody theory. Journal of Agricultural Machinery 45(03):282–287+304. https://doi.org/10.6041/j.issn.1000-1298.2014.03.046

  24. Fan JW, Guan JL, Wang WC, Luo Q, Zhang XL, Wang LY (2002) A universal modeling method for enhancement the volumetric accuracy of CNC machine tools. J Mater Process Technol 129:624–8. https://doi.org/10.1016/S0924-0136(02)00669-6

  25. Lin PD, Tzeng CS (2008) Modeling and measurement of active parameters and workpiece home position of a multi-axis machine tool. Int J Mach Tools Manuf 48(3):338–49. https://doi.org/10.1016/j.ijmachtools.2007.10.004

  26. Jung JH, Choi JP, Lee SJ (2006) Modeling and measurement of active parameters and workpiece home position of a multi-axis machine tool. J Mater Process Technol 174(1–3):56–66. https://doi.org/10.1016/j.jmatprotec.2004.12.014

    Article  Google Scholar 

  27. Xia S (2020) Crucial geometric error compensation towards gear grinding accuracy enhancement based on simplified actual inverse kinematic model. Int J Mech Sci 169:105319. https://doi.org/10.1016/j.ijmecsci.2019.105319

    Article  Google Scholar 

  28. Ding S, Huang XD, Yu CJ, Wang W (2016) Actual inverse kinematics for position independent and position dependent geometric error compensation of five-axis machine tools. Int J Mach Tools Manuf 111:55–62. https://doi.org/10.1016/j.ijmachtools.2016.10.001

    Article  Google Scholar 

  29. Tian WJ, Gao WG, Zhang DW, Huang T (2014) A general approach for error modeling of machine tools. Int J Mach Tools Manuf 79:17–23. https://doi.org/10.1016/j.ijmachtools.2014.01.003

    Article  Google Scholar 

  30. Xiang ST, Li HM, Deng M, Yang JG (2018) Geometric error analysis and compensation for multi-axis spiral bevel gears milling machine. Mech Mach Theory 121:59–74. https://doi.org/10.1016/j.mechmachtheory.2017.10.014

    Article  Google Scholar 

  31. Artoni A, Gabiccini M, Guiggiani M (2008) Nonlinear identification of machine settings for flank form modifications in hypoid gears. J Mech Des 130(11):112602. https://doi.org/10.1115/1.2976454

    Article  Google Scholar 

  32. Li F, Wang SM, Chen P, Li ZB, Li LL, Peng Q (2022) Multi-objective variable parameter optimization algorithm for spiral bevel gear tooth surface considering meshing efficiency and contact performance. J Mech Sci Technol 36:3547–3559. https://doi.org/10.1007/s12206-022-0631-7

    Article  Google Scholar 

  33. Ding H, Tang JY, Zhong J, Zhou ZY (2016) A hybrid modification approach of machine-tool setting considering high tooth contact performance in spiral bevel and hypoid gears. J Manuf Syst 41:228–238. https://doi.org/10.1016/j.jmsy.2016.09.003

    Article  Google Scholar 

  34. Peng SD, Ding H, Tang JY, Zhou YS (2020) Collaborative machine tool settings compensation considering both tooth flank geometrical and physical performances for spiral bevel and hypoid gears. J Manuf Process 54:169–179. https://doi.org/10.1016/j.jmapro.2020.02.035

    Article  Google Scholar 

  35. Chen P, Dong H, Wang SM, Li F, He Q, Li Y (2021) Tooth surface 6\(\sigma \) robust optimization design under installation error of spiral bevel gear. J Aerosp Power 36(09):1871-1879. https://doi.org/10.13224/j.cnki.jasp.20200506

Download references

Funding

This work was supported by the National Natural Science Foundation of China No.51175422 and the Shaanxi Natural Science Basic Research Program No.2022JM-195.

Author information

Authors and Affiliations

Authors

Contributions

Peng Chen: conceptualization, methodology, software, writing—original draft. Fei Li: data curation.

Corresponding author

Correspondence to Peng Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Wang, S., Li, B. et al. A novel geometric error compensation method for improving machining accuracy of spiral bevel gear based on inverse kinematic model. Int J Adv Manuf Technol 127, 4339–4355 (2023). https://doi.org/10.1007/s00170-023-11628-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11628-2

Keywords

Navigation