Skip to main content
Log in

Stability analysis of milling chatter in six-degree-of-freedom industrial robots

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Due to the low structural rigidity of six-degree-of-freedom (DOF) industrial robots, the chattering phenomenon is prone to occur under the excitation of periodic milling force, which has an effect on the processing quality of workpieces. In this paper, the influence of milling parameters on the stability of six-DOF robot milling is studied, under the consideration of the mode coupling effect and the regenerative effect on milling stability. First, a mode equation considering both the mode coupling effect and the regenerative effect is developed. Second, based on the fully discrete method, the chatter stability domain model of six-DOF robot (namely, the stability lobe diagram) is established, and the influences of the spindle speed, axial depth of cut, radial depth of cut, and feed rate on the stability of the machining system are analyzed. Finally, the accuracy of the prediction results of the chatter stability domain model is verified by milling experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Moradi H, Bakhtiari-Nejad F, Movahhedy MR (2008) Tuneable vibration absorber design to suppress vibrations: an application in boring manufacturing process. J Sound Vib 318:93–108. https://doi.org/10.1016/j.jsv.2008.1004.1001

    Article  Google Scholar 

  2. Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51:363–376. https://doi.org/10.1016/j.ijmachtools.2011.1001.1001

    Article  Google Scholar 

  3. Merritt HE (1965) Theory of self-excited machine-tool chatter: contribution to machine-tool chatter research—1. Asme Ser B J Eng Ind 87(447–454):4. https://doi.org/10.1115/1111.3670861

    Article  Google Scholar 

  4. Siddhpura M, Paurobally R (2012) A review of chatter vibration research in turning. Int J Mach Tools Manuf 60:27–47. https://doi.org/10.1016/j.ijmachtools.2012.1005.1007

    Article  Google Scholar 

  5. Insperger T, Lehotzky D, Stepan G (2015) Regenerative delay, parametric forcing and machine tool chatter: a review. IFAC-PapersOnLine 48:322–327. https://doi.org/10.1016/j.ifacol.2015.1009.1398

    Article  Google Scholar 

  6. Pan Z, Hui Z, Zhu Z, Wang J (2006) Chatter analysis of robotic machining process. J Mater Process Technol 173(301–309):3. https://doi.org/10.1016/j.jmatprotec.2005.1011.1033

    Article  Google Scholar 

  7. Xiao JZ, Cai HX, Ye D, Ming JF, You LX (2012) Milling stability analysis with simultaneously considering the structural mode coupling effect and regenerative effect. Int J Mach Tools Manuf 53:127–140. https://doi.org/10.1016/j.ijmachtools.2011.1010.1004

    Article  Google Scholar 

  8. Gienke O, Pan ZX, Yuan L, Lepper T, Duin SV (2019) Mode coupling chatter prediction and avoidance in robotic machining process. Int J Adv Manuf Technol 104:2103–2116. https://doi.org/10.1007/s00170-00019-04053-x

    Article  Google Scholar 

  9. Yuan L, Pan Z, Ding D, Sun S, Li WM (2018) A review on chatter in robotic machining process regarding both regenerative and mode coupling mechanism. IEEE/ASME Trans Mechatron 23:2240–2251. https://doi.org/10.1109/TMECH.2018.2864652

    Article  Google Scholar 

  10. Motallebia A, Doniavi A, Sahebi Y (2019) An analysis and modeling of the dynamic stability of the cutting process against self-excited vibration. Mech Mech Eng 22:28–35. https://doi.org/10.2478/mme-2019-0005

    Article  Google Scholar 

  11. Hazel B, Rafieian F, Liu ZH (2011) Impact-cutting and regenerative chatter in robotic grinding. ASME International Mechanical Engineering Congress and Exposition 54891(349–359):3. https://doi.org/10.1115/IMECE2011-62826

    Article  Google Scholar 

  12. Cen L, Melkote SN (2017) CCT-based mode coupling chatter avoidance in robotic milling. J Manuf Process 29:50–61. https://doi.org/10.1016/j.jmapro.2017.1006.1010

    Article  Google Scholar 

  13. Chen QZ, Zhang CR, Hu TL, Zhou Y, Ni HP, Xue XR (2022) Posture optimization in robotic machining based on comprehensive deformation index considering spindle weight and cutting force. Robot Comput-Integr Manuf 74:102290. https://doi.org/10.1016/j.rcim.2021.102290

    Article  Google Scholar 

  14. Tobias SA, Fishwick W (1958) The chatter of lathe tools under orthogonal cutting conditions. Trans Am Soc Mech Eng 80:1079–1087. https://doi.org/10.1115/1071.4012609

    Article  Google Scholar 

  15. Guo YJ, Dong HY, Wang GF, Ke YL (2016) Vibration analysis and suppression in robotic boring process. Int J Mach Tools Manuf 101:102–110. https://doi.org/10.1016/j.ijmachtools.2015.11.01

    Article  Google Scholar 

  16. Zheng ZP, Jin X, Sun YW, Zhang ZJ, Sun HC, Li QM (2020) Prediction of chatter stability for enhanced productivity in parallel orthogonal turn-milling. Int J Adv Manuf Technol 110:2377–2388. https://doi.org/10.1007/s00170-00020-06015-00170

    Article  Google Scholar 

  17. Paliwal V, Babu NR (2020) Prediction of stability lobe diagrams in high-speed milling by operational modal analysis. Procedia Manufacturing 48:283–293. https://doi.org/10.1016/j.promfg.2020.05.049

    Article  Google Scholar 

  18. Faassen RPN, Van de Wouw N, Oosterling JAJ, Nijmeijer H (2003) Prediction of regenerative chatter by modelling and analysis of high-speed milling. Int J Mach Tools Manuf 43:1437–1446. https://doi.org/10.1016/S0890-6955(03)00171-8

    Article  Google Scholar 

  19. Ni J, Dai RL, Yue XP, Zheng JQ, Feng K (2022) Contribution ratio assessment of process parameters on robotic milling performance. Materials 15:3566. https://doi.org/10.3390/ma15103566

    Article  Google Scholar 

  20. Song QH, Ai. X, Wan Y, Pan YZ (2008) Stability prediction for high-speed milling including feed rate in low radial immersion. China Mech Eng 19:1148–1152 (In Chinese). https://doi.org/10.3321/j.issn:1004-132X.2008.10.004

  21. Wang GF, Dong HY, Guo YJ, Ke YL (2017) Chatter mechanism and stability analysis of robotic boring. Int J Adv Manuf Technol 91(411–421):4. https://doi.org/10.1007/s00170-00016-09731-00179

    Article  Google Scholar 

  22. Altintaş Y, Budak E (1995) Analytical prediction of stability lobes in milling. CIRP Ann 44:357–362. https://doi.org/10.1016/S0007-8506(07)62342-7

    Article  Google Scholar 

  23. Zhu LD, Liu BG, Chen HY (2018) Research on chatter stability in milling and parameter optimization based on process damping. J Vib Control 12:2642–2655. https://doi.org/10.1177/1077546317692159

    Article  Google Scholar 

  24. Tamás I, Gábor S (2002) Semi-discretization method for delayed systems. Int J Numer Meth Eng 5(503–518):5. https://doi.org/10.1002/nme.1505

    Article  MathSciNet  MATH  Google Scholar 

  25. Totis G (2009) RCPM—a new method for robust chatter prediction in milling. Int J Mach Tools Manuf 49:273–284. https://doi.org/10.1016/j.ijmachtools.2008.10.008

    Article  Google Scholar 

  26. Ding Y, Zhu LM, Zhang XJ, Ding H (2010) A full-discretization method for prediction of milling stability. Int J Mach Tools Manuf 50(502–509):5. https://doi.org/10.1016/j.ijmachtools.2010.1001.1003

    Article  Google Scholar 

  27. Long XH, Balachandran B, Mann BP (2007) Dynamics of milling processes with variable time delays. Nonlinear Dyn 47:49–63. https://doi.org/10.1007/s11071-11006-19058-11074

    Article  MATH  Google Scholar 

  28. Cen LJ, Melkote SN (2017) Effect of robot dynamics on the machining forces in robotic milling. Procedia Manufacturing 10(486–496):4. https://doi.org/10.1016/j.promfg.2017.1007.1034

    Article  Google Scholar 

  29. Olvera D, Elías-Zúñiga A, Martínez-Romero O, López de Lacalle LN, Martínez-Alfaro H, Siller HR, Pineda MW (2016) Improved predictions of the stability lobes for milling cutting operations of thin-wall components by considering ultra-miniature accelerometer mass effects. Int J Adv Manuf Technol 86:2139–2146. https://doi.org/10.1007/s00170-00015-08287-00174

    Article  Google Scholar 

  30. Altintas Y, Automation M (2000) Metal cutting mechanics, machine tool vibrations and CNC design. Manuf Autom 5:56–64. https://doi.org/10.1115/1111.1399383

    Article  Google Scholar 

  31. Zhong WX, Williams FW (1994) A precise time step integration method. Proc Inst Mech Eng C J Mech Eng Sci 208(427–430):4. https://doi.org/10.1243/PIME.PROC.1994.1208.1148.1202

    Article  Google Scholar 

  32. Abele E, Fiedler U (2004) Creating stability lobe diagrams during milling. CIRP Ann 53(309–312):3. https://doi.org/10.1016/S0007-8506(1007)60704-60705

    Article  Google Scholar 

  33. Quintana G, Ciurana J, Teixidor D (2008) A new experimental methodology for identification of stability lobes diagram in milling operations. Int J Mach Tools Manuf 48(1637–1645):16. https://doi.org/10.1016/j.ijmachtools.2008.1607.1006

    Article  Google Scholar 

  34. Wang RQ, Li FG, Niu JB, Sun YW (2022) Prediction of pose-dependent modal properties and stability limits in robotic ball-end milling. Robot Comput-Integr Manuf 75:102–307. https://doi.org/10.1016/j.rcim.102021.102307

    Article  Google Scholar 

  35. Sun LJ, Zheng K, Liao WH, Liu JS, Feng JD, Dong S (2020) Investigation on chatter stability of robotic rotary ultrasonic milling. Robot Comput-Integr Manuf 63:101911. https://doi.org/10.1016/j.rcim.102019.101911

    Article  Google Scholar 

  36. Long XH, Balachandran B, Mann BP (2007) Dynamics of milling processes with variable time delays. Nonlinear Dyn 47:49–63. https://doi.org/10.1007/s11071-11006-19058-11074

    Article  MATH  Google Scholar 

Download references

Funding

The authors received financial support from the National Natural Science Foundation of China (U22A20201), the General Project of Shandong Provincial Natural Science Foundation (ZR2020ME116), and the Major Science and Technology Innovation Project of Shandong Province (2022CXGC010202).

Author information

Authors and Affiliations

Authors

Contributions

Yun Zhang: writing — original draft, writing — review and editing, experiment. Tingting Zhou: conceptualization, writing — review and editing, project management. Tianliang Hu and Jinwei Qiao: validation, methodology.

Corresponding author

Correspondence to Tingting Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhou, T., Hu, T. et al. Stability analysis of milling chatter in six-degree-of-freedom industrial robots. Int J Adv Manuf Technol 127, 2861–2880 (2023). https://doi.org/10.1007/s00170-023-11615-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11615-7

Keywords

Navigation