Skip to main content

Advertisement

Log in

An analysis of the hot forming characteristics of diffusion-bonded TC4 alloy using processing maps

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Since the hot forming of TC4 alloy after diffusion bonding has extensive applications in aerospace and medical industries, it is practically significant to explore the influence of diffusion bonding on the alloy’s hot formability and identify the optimal forming parameters. Therefore, dual-stage diffusion bonding of aviation grade TC4 is carried out firstly at 900 °C for 1 h and then at 930 °C for 2 h under 2-MPa normal pressure in \(5.0\times {10}^{-3}\)-Pa vacuum atmosphere. Another block of the as-received alloy is subjected to the same thermal loading as the diffusion bonding process. The diffusion-bonded and heat-treated alloys are then subjected to uniaxial tensile tests at \(750-900\) °C and \({0.0001-0.1\mathrm{ s}}^{-1}\). Based on the tensile test data, the constitutive and dynamic material models are developed to investigate diffusion bonding effects on the alloy’s hot forming behavior and identify optimal forming conditions. The developed constitutive model showed good predictability. The apparent activation energy of diffusion bonded (440 \(-\) 510 \(\mathrm{kJ}\cdot {\mathrm{mole}}^{-1}\)) and heat-treated (400 \(\mathrm{kJ}\cdot {\mathrm{mole}}^{-1}\)) alloys indicated that dynamic recrystallization and recovery are the primary deformation mechanisms. The processing maps revealed that diffusion bonding expanded the instability domain and lowered the dissipation efficiency, limiting the safe working conditions of the alloy. The analysis of deformed microstructure validated the findings of processing maps. The optimal processing conditions of \(800\) °C /0.0001 s–1 and 850 °C /0.0001 s–1 are discovered for diffusion-bonded and heat-treated alloys, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Xun YW, Tan MJ (2000) Applications of superplastic forming and diffusion bonding to hollow engine blades. J Mater Process Technol 99:80–85. https://doi.org/10.1016/S0924-0136(99)00377-5

    Article  Google Scholar 

  2. Hefti LD (2008) Innovations in the superplastic forming and diffusion bonded process. J Mater Eng Perform 17:178–182. https://doi.org/10.1007/s11665-007-9178-0

    Article  Google Scholar 

  3. Burkhart ET, Hefti L (2020) Advancements of superplastic forming and diffusion bonding of titanium alloys for heat critical aerospace applications. SAE Int J Adv Curr Pract Mobil 2:1202–1208. https://doi.org/10.4271/2020-01-0033

    Article  Google Scholar 

  4. Chandrappa K, Sumukha CS, Sankarsh BB, Gowda R (2020) Superplastic forming with diffusion bonding of titanium alloys. Mater Today: Proc 27:2909–2913. https://doi.org/10.1016/j.matpr.2020.03.514

    Article  Google Scholar 

  5. Lee HS, Yoon JH, Yi YM, Shin DH (2007) Superplastic characteristics and diffusion bonding of Ti-6Al-4V alloy. Key Eng Mater 345:549–552. https://doi.org/10.4028/www.scientific.net/KEM.345-346.549

    Article  Google Scholar 

  6. Mosleh AO, Mikhaylovskaya AV, Kotov AD, Kwame JS (2019) Experimental, modelling and simulation of an approach for optimizing the superplastic forming of Ti-6%Al-4%V titanium alloy. J Manuf Process 45:262–272. https://doi.org/10.1016/j.jmapro.2019.06.033

    Article  Google Scholar 

  7. Trân R, Reuther F, Winter S, Psyk V (2020) Process development for a superplastic hot tube gas forming process of titanium (Ti-3Al-2.5V) hollow profiles. Metals 10:1150. https://doi.org/10.3390/met10091150

    Article  Google Scholar 

  8. Australian Transport Safety Bureau (2020) Engine failure involving Airbus A330, 9M-XXE, near Carnarvon, Western Australia, on 25 June 2017. 62 Northbourne Avenue Canberra, Australian Capital Territory

  9. Wu X, Chen M, Xie L, Zhang T, Hu Z (2015) Twist-bend forming of aeroengine titanium TC4 wide-chord hollow fan blade with complex geometries. Acta Aeronaut Astonaut Sin 36:2055–2063. https://doi.org/10.7527/S1000-6893.2014.0271

    Article  Google Scholar 

  10. Chen M, Wu X, Xie L, Wang N, Su N (2019) Two-layer process and optimal blank design for hollow titanium wide-chord fan blades with complex geometries. Rare Met Mater Eng 48:1717–1724

    Google Scholar 

  11. Li C, Sardar MI, Lang L, Guo Y, Li X, Alexandrova S, Zhang D (2022) Hot deformation behavior and strain compensation constitutive model of equiaxed fine grain diffusion-welded micro-duplex TC4 titanium alloy. Chin J Aeronaut. https://doi.org/10.1016/J.CJA.2022.07.025

    Article  Google Scholar 

  12. Ma X, Zeng W, Tian F, Zhou Y, Sun Y (2012) Optimization of hot process parameters of Ti-6.7Al-2Sn-2.2Zr-2.1Mo-1W-0.2Si alloy with lamellar starting microstructure based on the processing map. Mater Sci Eng, A 545:132–138. https://doi.org/10.1016/j.msea.2012.03.011

    Article  Google Scholar 

  13. Seshacharyulu T, Medeiros SC, Frazier WG, Prasad YVRK (2000) Hot working of commercial Ti-6Al-4V with an equiaxed α-β microstructure: Materials modeling considerations. Mater Sci Eng A 284:184–194. https://doi.org/10.1016/s0921-5093(00)00741-3

    Article  Google Scholar 

  14. Park CH, Ko YG, Park JW, Lee CS (2008) Enhanced superplasticity utilizing dynamic globularization of Ti-6Al-4V alloy. Mater Sci Eng A 496:150–158. https://doi.org/10.1016/j.msea.2008.05.001

    Article  Google Scholar 

  15. Peng X, Guo H, Shi Z, Qin C, Zhao Z, Yao Z (2014) Study on the hot deformation behavior of TC4-DT alloy with equiaxed α+β starting structure based on processing map. Mater Sci Eng A 605:80–88. https://doi.org/10.1016/j.msea.2014.03.047

    Article  Google Scholar 

  16. Matsumoto H, Velay V (2017) Mesoscale modeling of dynamic recrystallization behavior, grain size evolution, dislocation density, processing map characteristic, and room temperature strength of Ti-6Al-4V alloy forged in the (α+β) region. J Alloy Compd 708:404–413. https://doi.org/10.1016/j.jallcom.2017.02.285

    Article  Google Scholar 

  17. Zhang W, Ding H, Zhao J, Yang B, Yang W (2018) Hot deformation behavior and processing maps of Ti-6Al-4V alloy with starting fully lamellar structure. J Mater Res 33:3677–3688. https://doi.org/10.1557/jmr.2018.331

    Article  Google Scholar 

  18. Bodunrin MO, Chown LH, van der Merwe JW, Alaneme KK (2019) Hot working of Ti-6Al-4V with a complex initial microstructure. IntJ Mater Form 12:857–874. https://doi.org/10.1007/s12289-018-1457-9

    Article  Google Scholar 

  19. Liu Q, Hui S, Tong K, Yu Y, Ye W, Song SY (2019) Investigation of high temperature behavior and processing map of Ti-6Al-4V-0.11Ru titanium alloy. J Alloys Compd 787:527–536. https://doi.org/10.1016/j.jallcom.2019.02.046

    Article  Google Scholar 

  20. Yang X, Wang Y, Dong X, Peng C, Ji B, Xu Y, Li W (2021) Hot deformation behavior and microstructure evolution of the laser solid formed TC4 titanium alloy. Chin J Aeronaut 34:163–182. https://doi.org/10.1016/j.cja.2020.07.036

    Article  Google Scholar 

  21. Wu H, Li X, Mei Q, Chen J, Wu G (2019) A Flow behavior of diffusion bonding interface of Ti6Al4V alloy over a wide range of strain rates. Mater Sci Eng A 761:138067. https://doi.org/10.1016/j.msea.2019.138067

    Article  Google Scholar 

  22. Zener C, Hollomon JH (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15:22–32. https://doi.org/10.1063/1.1707363

    Article  Google Scholar 

  23. Sellars CM, McTegart WJ (1966) On the mechanism of hot deformation. Acta Metall 14:1136–1138. https://doi.org/10.1016/0001-6160(66)90207-0

    Article  Google Scholar 

  24. Wang H, Zhao K, Chu X, Zhao B, Gao J (2019) Constitutive modelling and microscopic analysis of TC4 alloy sheet at elevated temperature. Results Phys 13:102332. https://doi.org/10.1016/j.rinp.2019.102332

    Article  Google Scholar 

  25. N R (2011) Metals for superplastic forming. In: Superplastic Forming of Advanced Metallic Materials. Woodhead Publishing, pp 3–33

  26. Ling CP, McCormick PG (1993) Constitutive modelling of strain rate sensitivity. In: Advances in Engineering Plasticity and its Applications, p 217–222. https://doi.org/10.1016/B978-0-444-89991-0.50030-5

  27. Yan SL, Yang H, Li HW, Yao X (2016) Variation of strain rate sensitivity of an aluminum alloy in a wide strain rate range: mechanism analysis and modeling. J Alloy Compd 688:776–786. https://doi.org/10.1016/j.jallcom.2016.07.077

    Article  Google Scholar 

  28. Ning Y, Yao Z, Guo H, Fu MW, Li H, Xie X (2010) Investigation on hot deformation behavior of P/M Ni-base superalloy FGH96 by using processing maps. Mater Sci Eng A 527:6794–6799. https://doi.org/10.1016/j.msea.2010.07.040

    Article  Google Scholar 

  29. Du Z, Jiang S, Zhang K (2015) The hot deformation behavior and processing map of Ti-47.5Al-Cr-V alloy. Mater Des 86:464–473. https://doi.org/10.1016/j.matdes.2015.07.027

    Article  Google Scholar 

  30. Ning YQ, Xie BC, Liang HQ, Li H, Yang XM, Guo HZ (2015) Dynamic softening behavior of TC18 titanium alloy during hot deformation. Mater Des 71:68–77. https://doi.org/10.1016/j.matdes.2015.01.009

    Article  Google Scholar 

  31. Chai X, Zhang X, Wang Z, Liu Y (2015) Modeling of the diffusion bond for SPF/DB titanium hollow structures. Int J Aerospace Eng 2015:1–9. https://doi.org/10.1155/2015/694564

    Article  Google Scholar 

  32. Narayana Murty SVS, Nageswara Rao B, Kashyap BP (2000) Instability criteria for hot deformation of materials. Int Mater Rev 45:15–26. https://doi.org/10.1179/095066000771048782

    Article  Google Scholar 

  33. Prasad YVRK (2003) Processing maps: a status report. J Mater Eng Perform 12:638–645. https://doi.org/10.1007/s11665-013-0732-7

    Article  Google Scholar 

  34. Al Omar A, Prado JM (2012) Criteria for prediction of plastic instabilities for hot working processes (part I: theoretical review). Weld Int 26:921–934. https://doi.org/10.1080/09507116.2011.592704

    Article  Google Scholar 

  35. Kumar AK (1987) Criteria for predicting metallurgical instabilities in processing. Indian Institute of Science, Bangalore

    Google Scholar 

  36. Sardar MI, Li C, Lang L, Guo Y, Ali H, Haq F, Alexandrova S, Jiang J, Han H (2022) An investigation into Arrhenius type constitutive models to predict complex hot deformation behavior of TC4 alloy having bimodal microstructure. Mater Today Commun 31:103622. https://doi.org/10.1016/j.mtcomm.2022.103622

    Article  Google Scholar 

  37. Giuliano G (2011) Superplastic forming of advanced metallic materials—methods and applications, 1st edn. Woodhead Publishing Limited, UK

    Book  Google Scholar 

  38. Mavromihales M, Mason J, Weston W (2003) A case of reverse engineering for the manufacture of wide chord fan blades (WCFB) used in Rolls Royce aero engines. J Mater Process Technol 134:279–286. https://doi.org/10.1016/S0924-0136(02)01108-1

    Article  Google Scholar 

  39. Peng Y, Li J, Li Z, Li S, Guo W, Gao X, Xiong J (2022) Interfacial voids and microstructure evolution, bonding behavior and deformation mechanism of TC4 diffusion bonded joints. J Manuf Process 81:837–851. https://doi.org/10.1016/j.jmapro.2022.07.037

    Article  Google Scholar 

  40. Lin Y, Chen M-S, Zhong J (2008) Constitutive modeling for elevated temperature flow behavior of 42CrMo steel. Comput Mater Sci 42:470–477. https://doi.org/10.1016/j.commatsci.2007.08.011

    Article  Google Scholar 

  41. Rudnytskyj A, Simon P, Jech M, Gachot C (2020) Constitutive modelling of the 6061 aluminium alloy under hot rolling conditions and large strain ranges. Mater Des 190:108568. https://doi.org/10.1016/j.matdes.2020.108568

    Article  Google Scholar 

  42. Curtin WA, Olmsted DL, Hector LG (2006) A predictive mechanism for dynamic strain ageing in aluminium–magnesium alloys. Nat Mater 5:875–880. https://doi.org/10.1038/nmat1765

    Article  Google Scholar 

  43. Nieh TG, Wadsworth J (1997) Microstructural characteristics and deformation properties in superplastic intermetallics. Mater Sci Eng A 239–240:88–96. https://doi.org/10.1016/s0921-5093(97)00564-9

    Article  Google Scholar 

  44. Guo W, Jia Q, Li R, Li W (2017) The superplastic deformation behavior and phase evolution of Ti-6Al-4V alloy at constant tensile velocity. High Temp Mater Process (London) 36:55–62. https://doi.org/10.1515/htmp-2015-0205

    Article  Google Scholar 

  45. Seshacharyulu T, Medeiros SC, Morgan JT, Malas JC, Frazier WG, Prasad YVRK (1999) Hot deformation mechanisms in ELI grade Ti-6A1-4V. Scripta Mater 41:283–288. https://doi.org/10.1016/S1359-6462(99)00163-3

    Article  Google Scholar 

  46. Jia W, Zeng W, Zhou Y, Liu J, Wang Q (2011) High-temperature deformation behavior of Ti60 titanium alloy. Mater Sci Eng A 528:4068–4074. https://doi.org/10.1016/j.msea.2011.01.113

    Article  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No. 51675029).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: all authors. Experimentation and data acquisition: Sardar Muhammad Imran, Can Li, Bo Zang. Analysis and interpretation of data: Sardar Muhammad Imran, Can Li. Modeling and validation: Sardar Muhammad Imran, Can Li. Drafting the manuscript: Sardar Muhammad Imran. Revising the manuscript critically for important intellectual content: Lang Lihui, Jun Jiang, Li Yong, Xiaoxing Li.

Corresponding author

Correspondence to Sardar Muhammad Imran.

Ethics declarations

Consent to participate

All the authors agreed to participate in this research study and hereby grant consent to The International Journal of Advance Manufacturing Technology, the rights to publish this article. None of the material has been published or is under consideration for publication elsewhere. All the authors hereby confirm that this manuscript is their original work, and the citations have been marked with references.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imran, S.M., Li, C., Lang, L. et al. An analysis of the hot forming characteristics of diffusion-bonded TC4 alloy using processing maps. Int J Adv Manuf Technol 127, 3239–3253 (2023). https://doi.org/10.1007/s00170-023-11556-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11556-1

Keywords

Navigation