Skip to main content
Log in

Research advances in fatigue behaviour of clinched joints

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In order to meet the increasingly stringent emission standards, a wide variety of lightweight materials are accounting for an increasing proportion in the white-body of vehicle. Many new joining technologies have been developed to connect these lightweight materials. Mechanical clinching is an effective alternative technique to join similar and dissimilar lightweight materials, which has been widely used in automotive industry. Understanding the fatigue properties of clinched joints is extremely significant as fatigue is the dominant failure mode in engineering practice. This paper provides a systematic review on the research progress of fatigue behaviour of clinched joints, including fatigue strength, failure mechanism, influencing factors, and life estimation model. It has been found that clinched joints performed superior fatigue resistance than traditional welding joints, and the failure modes were divided into neck fracture, bottom pull-out, upper sheet fracture, and lower sheet fracture. The recent development of fatigue life estimation model is described with brief case study from the literature. In short, the main purpose of the present article is to figure out the development roadmap of fatigue behaviour investigation of clinched joints and provide some suggestions for further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. He X (2017) Clinching for sheet materials. Sci Technol Adv Mater 18:381–405. https://doi.org/10.1080/14686996.2017.1320930

    Article  Google Scholar 

  2. Li Y, Ma Y, Lou M, Lei H, Lin Z (2016) Advances in welding and joining processes of multi-material lightweight car body. J Mech Eng 52:1–23

    Article  Google Scholar 

  3. Peng H, Chen C, Ren X, Wu J (2021) Development of clinching process for various materials. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-021-08284-9

    Article  Google Scholar 

  4. US EPA O (2015) Science and Technology Development at the National Vehicle and Fuel Emissions Laboratory (NVFEL). https://www.epa.gov/vehicle-and-fuel-emissions-testing/engine-certification-and-compliance-testing. Accessed 7 Nov 2022

  5. Larsson JK, Hanicke L (1999) Multi-material approach with integrated joining technologies in the new Volvo S80. In: International Body Engineering Conference and Exposition, September 28, 1999 - September 30, 1999. SAE International, Detroit

  6. Stegemann T, Hahn O, Schulte A (1998) Advanced joining techniques for modem lightweight steel construction. Rev Met Paris 95:95–108. https://doi.org/10.1051/metal/199895010095

    Article  Google Scholar 

  7. Li Y, Hu Z, Yu H, Pang Q (2020) Research progress and technology of dissimilar joining between aluminum and steel. Mater Rep 34:13167–13174

    Google Scholar 

  8. Eshtayeh MM, Hrairi M (2016) Recent and future development of the application of finite element analysis in clinching process. Int J Adv Manuf Technol 84:2589–2608. https://doi.org/10.1007/s00170-015-7781-z

    Article  Google Scholar 

  9. Galinska A, Galinski C (2020) Mechanical joining of fibre reinforced polymer composites to metals-a review. Part II: riveting, clinching, non-adhesive form-locked joints, pin and loop joining. Polymers 12:1681. https://doi.org/10.3390/polym12081681

    Article  Google Scholar 

  10. Mori K, Abe Y (2018) A review on mechanical joining of aluminium and high strength steel sheets by plastic deformation. Int J Lightweight Mater Manuf 1:1–11. https://doi.org/10.1016/j.ijlmm.2018.02.002

    Article  Google Scholar 

  11. Lee Y-I, Kim H-K (2021) Effects of residual stresses on the fatigue lifetimes of self-piercing riveted joints of az31 mg alloy and al5052 al alloy sheets. Metals 11:2037. https://doi.org/10.3390/met11122037

    Article  Google Scholar 

  12. Mucha J, Kaščák L, Spišák E (2013) The experimental analysis of forming and strength of clinch riveting sheet metal joint made of different materials. Adv Mech Eng 5:848973. https://doi.org/10.1155/2013/848973

    Article  Google Scholar 

  13. Peng H, Chen C, Zhang H, Ran X (2020) Recent development of improved clinching process. Int J Adv Manuf Technol 110:3169–3199. https://doi.org/10.1007/s00170-020-05978-4

    Article  Google Scholar 

  14. Qin D, Chen C, Ouyang Y, Wu J, Zhang H (2021) Finite element methods used in clinching process. Int J Adv Manuf Technol 116:2737–2776. https://doi.org/10.1007/s00170-021-07602-5

    Article  Google Scholar 

  15. Wu J, Chen C, Ouyang Y, Qin D, Li H (2021) Recent development of the novel riveting processes. Int J Adv Manuf Technol 117:19–47. https://doi.org/10.1007/s00170-021-07689-w

    Article  Google Scholar 

  16. Zhang Y, Xu H, Peng R, Lu Y, Zhu L (2021) The state of the art of finite element analysis in mechanical clinching. Int J Precis Eng Manuf-Green Technol. https://doi.org/10.1007/s40684-021-00366-z

    Article  Google Scholar 

  17. Zeuner A, Ewenz L, Kalich J, Schöne S, Füssel U, Zimmermann M (2022) The influence of heat treatment on the microstructure, surface roughness and shear tensile strength of AISI 304 clinch joints. Metals 12:1514. https://doi.org/10.3390/met12091514

    Article  Google Scholar 

  18. He X (2010) Recent development in finite element analysis of clinched joints. Int J Adv Manuf Technol 48:607–612. https://doi.org/10.1007/s00170-009-2306-2

    Article  Google Scholar 

  19. Schramm B, Friedlein J, Gröger B, Bielak C, Bobbert M, Gude M, Meschut G, Wallmersperger T, Mergheim J (2022) A review on the modeling of the clinching process chain — part II: joining process. J Adv Join Process 100134. https://doi.org/10.1016/j.jajp.2022.100134

  20. Schramm B, Martin S, Steinfelder C, Bielak C, Brosius A, Meschut G, Tröster T, Wallmersperger T, Mergheim J (2022) A review on the modeling of the clinching process chain — part I: design phase. J Adv Join Process 6:100133. https://doi.org/10.1016/j.jajp.2022.100133

    Article  Google Scholar 

  21. Schramm B, Harzheim S, Weiß D, Joy T, Hofmann M, Mergheim J, Wallmersperger T (2022) A review on the modeling of the clinching process chain — part III: operational phase. J Adv Join Process 100135. https://doi.org/10.1016/j.jajp.2022.100135

  22. Mucha J, Kaščák L, Spišák E (2011) Joining the car-body sheets using clinching process with various thickness and mechanical property arrangements. Arch Civ Mech Eng 11:135–148. https://doi.org/10.1016/S1644-9665(12)60179-4

    Article  Google Scholar 

  23. Zhang X, Chen C, Peng H (2022) Recent development of clinching tools and machines. Int J Adv Manuf Technol 121:2867–2899. https://doi.org/10.1007/s00170-022-09428-1

    Article  Google Scholar 

  24. Varis J (2006) Economics of clinched joint compared to riveted joint and example of applying calculations to a volume product. J Mater Process Technol 172:130–138. https://doi.org/10.1016/j.jmatprotec.2005.09.009

    Article  Google Scholar 

  25. Varis J (2003) The suitability of clinching as a joining method for high-strength structural steel. J Mater Process Technol 132:242–249. https://doi.org/10.1016/S0924-0136(02)00933-0

    Article  Google Scholar 

  26. Jiang B, Chen Q, Yang J (2020) Advances in joining technology of carbon fiber-reinforced thermoplastic composite materials and aluminum alloys. Int J Adv Manuf Technol 110:2631–2649. https://doi.org/10.1007/s00170-020-06021-2

    Article  Google Scholar 

  27. Peng H, Chen C, Ren X, Ran X, Gao X (2021) Research on the material flow and joining performance of two-strokes flattening clinched joint. Thin-Walled Struct 169:108289. https://doi.org/10.1016/j.tws.2021.108289

    Article  Google Scholar 

  28. Li Q, Xu C, Gao S, Han X, Ma F, Gu D, Zhao Q (2022) Research on the forming quality of clinched joint for dissimilar sheet metal. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-021-08602-1

    Article  Google Scholar 

  29. Cumin J, Stoić A, Duspara M, Samardžić I (2019) FEM numerical simulations of the mechanical clinching process of hc260y steel. Tehnički vjesnik 26:49–55. https://doi.org/10.17559/TV-20170529143820

  30. Han X, Zhao S, Chen C, Liu C, Xu F (2017) Optimization of geometrical design of clinching tools in flat-clinching. Proc Inst Mech Eng C J Mech Eng Sci 231:4012–4021. https://doi.org/10.1177/0954406216660335

    Article  Google Scholar 

  31. Oudjene M, Ben-Ayed L, Delamézière A, Batoz J-L (2009) Shape optimization of clinching tools using the response surface methodology with Moving Least-Square approximation. J Mater Process Technol 209:289–296. https://doi.org/10.1016/j.jmatprotec.2008.02.030

    Article  Google Scholar 

  32. He X, Gao A, Yang H, Xing B (2016) Mechanical behavior of clinched sheet material joints and strength design procedure. Acta Phys Pol A 129:698–700. https://doi.org/10.12693/APhysPolA.129.698

    Article  Google Scholar 

  33. Lee C, Kim J, Lee S, Ko D, Kim B (2010) Design of mechanical clinching tools for joining of aluminium alloy sheets. Mater Des 31:1854–1861. https://doi.org/10.1016/j.matdes.2009.10.064

    Article  Google Scholar 

  34. Lei L, He X, Yu T, Xing B (2019) Failure modes of mechanical clinching in metal sheet materials. Thin-Walled Struct 144:106281. https://doi.org/10.1016/j.tws.2019.106281

    Article  Google Scholar 

  35. Liu C, Han X, Wu W, Yang B (2021) Study on the analytical model of joint strength prediction of flat-clinching. J Braz Soc Mech Sci Eng 43:466. https://doi.org/10.1007/s40430-021-03185-0

    Article  Google Scholar 

  36. Xu H, Zhang Y, Peng R, Zhu L, Lu Y (2021) Simulation and experimental study on the strength of Al7075-T6 clinched joint. Eng Fail Anal 129:105735. https://doi.org/10.1016/j.engfailanal.2021.105735

    Article  Google Scholar 

  37. Coppieters S, Lava P, Baes S, Sol H, Van Houtte P, Debruyne D (2012) Analytical method to predict the pull-out strength of clinched connections. Thin-Walled Struct 52:42–52. https://doi.org/10.1016/j.tws.2011.12.002

    Article  Google Scholar 

  38. Mucha J, Kaščák Ľ, Witkowski W (2021) Research on the influence of the AW 5754 aluminum alloy state condition and sheet arrangements with AW 6082 aluminum alloy on the forming process and strength of the clinch rivet joints. Materials 14:2980. https://doi.org/10.3390/ma14112980

    Article  Google Scholar 

  39. Shyamlal C, Rajesh S, Suresh Kumar S (2021) A comprehensive review on the effect of precipitation on mechanical properties of friction stir welded aluminium alloys. Proc Inst Mech Eng C J Mech Eng Sci 235:6345–6356. https://doi.org/10.1177/09544062211011519

    Article  Google Scholar 

  40. Kang G, Luo H (2020) Review on fatigue life prediction models of welded joint. Acta Mech Sin 36:701–726. https://doi.org/10.1007/s10409-020-00957-0

    Article  Google Scholar 

  41. Lambiase F, Scipioni S, Lee C, Ko D, Liu F (2021) A state-of-the-art review on advanced joining processes for metal-composite and metal-polymer hybrid structures. Materials 14:1890. https://doi.org/10.3390/ma14081890

    Article  Google Scholar 

  42. Ewenz L, Bielak C, Otroshi M, Bobbert M, Meschut G, Zimmermann M (2022) Numerical and experimental identification of fatigue crack initiation sites in clinched joints. Prod Eng Res Dev. https://doi.org/10.1007/s11740-022-01124-z

    Article  Google Scholar 

  43. Su Z, Lin P, Lai W, Pan J (2015) Fatigue analyses of self-piercing rivets and clinch joints in lap-shear specimens of aluminum sheets. Int J Fatigue 72:53–65. https://doi.org/10.1016/j.ijfatigue.2014.09.022

    Article  Google Scholar 

  44. He X, Gu F, Ball A (2013) Fatigue behaviour of fastening joints of sheet materials and finite element analysis. Adv Mech Eng 5:658219. https://doi.org/10.1155/2013/658219

    Article  Google Scholar 

  45. Nordmark GE (1978) Fatigue performance of aluminum joints for automotive applications. In: SAE Technical Papers. SAE International

  46. Nordberg H (2005) Fatigue properties of stainless steel lap joints. spot welded, adhesive bonded, weldbonded, laser welded and clinched joints ff stainless steel sheets-a review of their fatigue properties. In: 2005 SAE World Congress, April 11, 2005 - April 14, 2005. SAE International, Detroit

  47. Abe Y, Kato T, Mori K, Nishino S (2014) Mechanical clinching of ultra-high strength steel sheets and strength of joints. J Mater Process Technol 214:2112–2118. https://doi.org/10.1016/j.jmatprotec.2014.03.003

    Article  Google Scholar 

  48. Abe Y, Saito T, Mori K, Kato T (2018) Mechanical clinching with dies for control of metal flow of ultra-high-strength steel and high-strength steel sheets. Proc Inst Mech Eng Part B-J Eng Manuf 232:644–649. https://doi.org/10.1177/0954405416683429

    Article  Google Scholar 

  49. Kim H (2013) Fatigue strength evaluation of the clinched lap joints of a cold rolled mild steel sheet. J Mater Eng Perform 22:294–299. https://doi.org/10.1007/s11665-012-0232-1

    Article  Google Scholar 

  50. Lin P, Su Z, Lai W, Pan J (2013) Fatigue behavior of self-piercing rivets and clinch joints in lap-shear specimens of aluminum sheets. SAE Int J Mater Manuf 6:293–298. https://doi.org/10.4271/2013-01-1024

    Article  Google Scholar 

  51. Xing B, He X, Wang Y, Yang H, Deng C (2015) Study of mechanical properties for copper alloy H62 sheets joined by self-piercing riveting and clinching. J Mater Process Technol 216:28–36. https://doi.org/10.1016/j.jmatprotec.2014.08.030

    Article  Google Scholar 

  52. Mori K, Abe Y, Kato T (2012) Mechanism of superiority of fatigue strength for aluminium alloy sheets joined by mechanical clinching and self-pierce riveting. J Mater Process Technol 212:1900–1905. https://doi.org/10.1016/j.jmatprotec.2012.04.017

    Article  Google Scholar 

  53. Galtier A, Duchet M (2007) Fatigue behaviour of high strength steel thin sheet assemblies. Weld World 51:19–27. https://doi.org/10.1007/BF03266556

    Article  Google Scholar 

  54. Zhang Y, He X, Zhang X, Zhang L (2019) Tensile shear and fatigue properties of titanium alloy sheet joints. Hanjie Xuebao/Trans China Weld Inst 40:150–154. https://doi.org/10.12073/j.hjxb.2019400224

  55. Zhang Y, He X, Wang Y, Lu Y, Gu F, Ball A (2018) Study on failure mechanism of mechanical clinching in aluminium sheet materials. Int J Adv Manuf Technol 96:3057–3068. https://doi.org/10.1007/s00170-018-1734-2

    Article  Google Scholar 

  56. Zhang Y, He X, Li Z, Zhang Y (2018) Fretting fatigue mechanism research of the aluminum alloy clinched joints. Jixie Gongcheng Xuebao/J Mech Eng 54:190–196. https://doi.org/10.3901/JME.2018.19.190

    Article  Google Scholar 

  57. Carboni M, Beretta S, Monno M (2006) Fatigue behaviour of tensile-shear loaded clinched joints. Eng Fract Mech 73:178–190. https://doi.org/10.1016/j.engfracmech.2005.04.004

    Article  Google Scholar 

  58. Feng M, He X, Xing B, Yan K (2012) The analysis of fatigue crack propagation and experiment research of clinched joints. Mater Rev 26:140–143

    Google Scholar 

  59. Zhang Y, Lu Y, Peng R, Xu H, Zhu L, Wang T (2022) The fatigue fracture mechanism of Al7075 aluminum alloy clinching joints. Proc Inst Mech Eng L: J Mater Des Appl. https://doi.org/10.1177/14644207221125996

    Article  Google Scholar 

  60. Zhang Y, He X, Zhang L, Zhang X (2017) Fatigue property and microanalysis of clinched joints of titanium alloy. Cailiao Daobao/Mater Rev 31:81–85. https://doi.org/10.11896/j.issn.1005-023X.2017.06.017

    Article  Google Scholar 

  61. Coppieters S, Zhang H, Xu F, Vandermeiren N, Breda A, Debruyne D (2017) Process-induced bottom defects in clinch forming: simulation and effect on the structural integrity of single shear lap specimens. Mater Des 130:336–348. https://doi.org/10.1016/j.matdes.2017.05.077

    Article  Google Scholar 

  62. Lei L, He X, Xing B, Zhao D, Gu F, Ball A (2019) Effect of foam copper interlayer on the mechanical properties and fretting wear of sandwich clinched joints. J Mater Process Technol 274:116285. https://doi.org/10.1016/j.jmatprotec.2019.116285

    Article  Google Scholar 

  63. Abe Y, Nishino S, Mori K, Kato T (2014) Improvement ofjoinability in mechanical clinching of ultra-high strength steel sheets using counter pressure. In: 6th International Conference on Tribology in Manufacturing Processes and Joining by Plastic Deformation, ICTMP 2014, June 22, 2014 - June 24, 2014. Trans Tech Publications Ltd, Darmstadt, pp 607–616

  64. Yang C, Yao J, Niu Y, Wang R, Kang J (2021) Fatigue life analysis of steel-aluminum non-rivet connection. J Plast Eng 28:154–162

    Google Scholar 

  65. Qi G (2016) Analysis on the influence of the join strength and the fatigue life of clinching with forming parameters. Master, Jinlin University

  66. Liu F, He X, Zeng K, Lu Y (2015) Analysis of mechanics performances for clinched joint with three-layers. Mater Sci Technol 23:118–123

    Google Scholar 

  67. Roux E, Bouchard P (2013) Kriging metamodel global optimization of clinching joining processes accounting for ductile damage. J Mater Process Technol 213:1038–1047. https://doi.org/10.1016/j.jmatprotec.2013.01.018

    Article  Google Scholar 

  68. Ewenz L, Kalich J, Zimmermann M, Füssel U (2021) Effect of different tool geometries on the mechanical properties of al-al clinch joints. Key Eng Mater 883:65–72. https://doi.org/10.4028/www.scientific.net/KEM.883.65

    Article  Google Scholar 

  69. Ewenz L, Kuczyk M, Zimmermann M (2022) Effect of the tool geometry on microstructure and geometrical features of clinched aluminum. J Adv Join Process 5:100091. https://doi.org/10.1016/j.jajp.2021.100091

    Article  Google Scholar 

  70. Gao Y (2019) Research on clinching joining process and joint performance of automobile body heterogeneous materials. Master, ChongqingJiaotong University

  71. Saathoff D, Mallick P (1998) Static and fatigue strength evaluation of clinched joints in an aluminum alloy. In: 1998 SAE International Congress and Exposition, February 23, 1998 - February 26, 1998. SAE International, Detroit

  72. Calabrese L, Proverbio E, Galtieri G, Borsellino C (2014) Effects of ageing on mechanical durability of round clinched steel/aluminium joints. Int J Mech Mater Eng 9:23. https://doi.org/10.1186/s40712-014-0023-6

    Article  Google Scholar 

  73. Calabrese L, Proverbio E, Galtieri G, Borsellino C (2015) Effect of corrosion degradation on failure mechanisms of aluminium/steel clinched joints. Mater Des 87:473–481. https://doi.org/10.1016/j.matdes.2015.08.053

    Article  Google Scholar 

  74. Calabrese L, Galtieri G, Borsellino C, Di Bella G, Proverbio E (2016) Durability of hybrid clinch-bonded steel/aluminum joints in salt spray environment. Int J Adv Manuf Technol 87:3137–3147. https://doi.org/10.1007/s00170-016-8701-6

    Article  Google Scholar 

  75. Baek S, Lee H, Lee C, Kim D (2011) Failure evaluation of clinched thin gauged pedestrian friendly hood by slam simulation. In: SAE 2011 World Congress and Exhibition, April 12, 2011 - April 14, 2011. SAE International, Detroit

  76. Harzheim S, Ewenz L, Zimmermann M, Wallmersperger T (2022) Corrosion phenomena and fatigue behavior of clinched joints: numerical and experimental investigations. J Adv Join Process 6:100130. https://doi.org/10.1016/j.jajp.2022.100130

    Article  Google Scholar 

  77. Liu F, He X, Gu F, Ball AD (2021) A comparative study of local heat treatment for enhancing overall mechanical properties of clinched joints. J Mater Eng Perform 30:1347–1355. https://doi.org/10.1007/s11665-020-05446-w

    Article  Google Scholar 

  78. Zhang Y, He X, Xing B, Cheng Q (2017) Effect of annealing treatment on fatigue behavior of titanium alloy clinched joints. Hanjie Xuebao/Trans China Weld Inst 38:73–76. https://doi.org/10.12073/j.hjxb.20151004001

    Article  Google Scholar 

  79. Zhang Y, He X, Zeng K, Lei L, Gu F, Ball A (2017) Influence of heat treatment on mechanical properties of clinched joints in titanium alloy sheets. Int J Adv Manuf Technol 91:3349–3361. https://doi.org/10.1007/s00170-017-0019-5

    Article  Google Scholar 

  80. Lei L, He X, Zhao D, Zhang Y, Gu F, Ball A (2018) Clinch-bonded hybrid joining for similar and dissimilar copper alloy, aluminium alloy and galvanised steel sheets. Thin-Walled Struct 131:393–403. https://doi.org/10.1016/j.tws.2018.07.017

    Article  Google Scholar 

  81. Lei L, He X, Gao A, Zhao D (2018) Influence of adhesive on fatigue property of 1420 aluminum-lithium alloy clinched joint. Cailiao Daobao/Mater Rev 32:2809–2815. https://doi.org/10.11896/j.issn.1005-023X.2018.16.020

    Article  Google Scholar 

  82. Moroni F (2019) Fatigue behaviour of hybrid clinch-bonded and self-piercing rivet bonded joints. J Adhes 95:577–594. https://doi.org/10.1080/00218464.2018.1552586

    Article  Google Scholar 

  83. Jackel M, Coppieters S, Hofmann M, Vandermeiren N, Landgrebe D, Debruyne D, Wallmersberger T, Faes K (2017) Mechanical joining of materials with limited ductility: Analysis of process-induced defects. In: 20th International ESAFORM Conference on Material Forming, ESAFORM 2017, April 26, 2017 - April 28, 2017. American Institute of Physics Inc., Dublin

  84. Lin P, Lin J, Li G (2018) Clinching process for aluminum alloy and carbon fiber-reinforced thermoplastic sheets. Int J Adv Manuf Technol 97:529–541. https://doi.org/10.1007/s00170-018-1960-7

    Article  Google Scholar 

  85. Lin P, Fang J, Lin J, Tran X, Ching Y (2020) Preheated (heat-assisted) clinching process for AL/CFRP cross-tension specimens. Materials 13:4170. https://doi.org/10.3390/ma13184170

    Article  Google Scholar 

  86. Tran V, Pan J, Pan T (2008) Fatigue behavior of aluminum 5754-O and 6111–T4 spot friction welds in lap-shear specimens. Int J Fatigue 30:2175–2190. https://doi.org/10.1016/j.ijfatigue.2008.05.025

    Article  Google Scholar 

  87. Tran V, Pan J, Pan T (2010) Fatigue behavior of spot friction welds in lap-shear and cross-tension specimens of dissimilar aluminum sheets. Int J Fatigue 32:1022–1041. https://doi.org/10.1016/j.ijfatigue.2009.11.009

    Article  Google Scholar 

  88. Lin P, Lo S, Wu S (2018) Fatigue life estimations of alclad AA2024-T3 friction stir clinch joints. Int J Fatigue 107:13–26. https://doi.org/10.1016/j.ijfatigue.2017.10.011

    Article  Google Scholar 

  89. Kim J, Kim H (2015) Fatigue behaviour of clinched joints in a steel sheet. Fatigue Fract Eng Mater Struct 38:661–672. https://doi.org/10.1111/ffe.12263

    Article  Google Scholar 

  90. Spak B, Schlicht M, Nowak K, Kästner M, Froitzheim P, Flügge W, Fiedler M (2022) Estimation of fatigue life for clinched joints with the Local Strain Approach. Procedia Struct Integr 38:572–580. https://doi.org/10.1016/j.prostr.2022.03.058

    Article  Google Scholar 

  91. Moroni F, Pirondi A, Kleiner F (2010) Experimental analysis and comparison of the strength of simple and hybrid structural joints. Int J Adhes Adhes 30:367–379. https://doi.org/10.1016/j.ijadhadh.2010.01.005

    Article  Google Scholar 

  92. Lin P, Lo S (2016) Development of friction stir clinching process for alclad 2024–t3 aluminum sheets. SAE Int J Mater Manuf 9:756–763. https://doi.org/10.4271/2016-01-0505

    Article  MathSciNet  Google Scholar 

  93. Lin P, Lo S (2017) Friction stir clinching of alclad AA2024-T3 sheets. Int J Adv Manuf Technol 92:2425–2437. https://doi.org/10.1007/s00170-017-0337-7

    Article  Google Scholar 

  94. Lin P, Chen W (2017) Fatigue analysis of swept friction stir clinch joints between aluminum and steel sheets. SAE Int J Mater Manuf 10:174–181. https://doi.org/10.4271/2017-01-0478

    Article  Google Scholar 

  95. Hörhold R, Müller M, Merklein M, Meschut G (2016) Mechanical properties of an innovative shear-clinching technology for ultra-high-strength steel and aluminium in lightweight car body structures. Weld World 60:613–620. https://doi.org/10.1007/s40194-016-0313-0

    Article  Google Scholar 

Download references

Funding

This work is supported by the Tianjin Technical Expert Project (grant no.: 22YDTPJC00480).

Author information

Authors and Affiliations

Authors

Contributions

Fulong Liu, Wei Chen, Yutao Men, Xiaotao Zhang and Jinlong Guo analysed the data; Fulong Liu, Chengjiang Deng, Limin Dong, and Jinlong Guo contributed materials analysis; Fulong Liu wrote the manuscript, and all authors reviewed it.

Corresponding author

Correspondence to Wei Chen.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Chen, W., Deng, C. et al. Research advances in fatigue behaviour of clinched joints. Int J Adv Manuf Technol 127, 1–21 (2023). https://doi.org/10.1007/s00170-023-11547-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11547-2

Keywords

Navigation