Skip to main content
Log in

Catalytic mechanism of tribochemical mechanical polishing on (0001) C-face of single crystal 6H-SiC substrate

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Aiming at these problems of low efficiency, high cost, and environmental pollution in the chemical mechanical polishing (CMP) process of single crystal SiC substrates, a dry-type tribochemical mechanical polishing (DTCMP) method was proposed, and catalysts were added to enhance its efficiency, and the mechanism of catalyst action was investigated. In this study, different contents of nanocatalysts Fe2O3 and Fe3O4 were added to the DTCMP experiments on 6H-SiC substrates, and the material removal characteristics of SiC substrates were investigated under different polishing pressures and rotational speeds with different types of catalysts. Surface morphology, hardness change, surface elements, and crystalline structure of SiC before and after the polishing were analyzed using white light interferometer, nanoindenter, scanning electron microscopes, and X-ray diffractometer. The results show that the catalytic performance of the Fe3O4 catalyst was superior to that of the Fe2O3 catalyst and that the Fe3O4 catalyst can catalyze the production of more ·OH from Na2CO3-1.5H2O2 during the assisted polishing process. The material removal rate (MRR) was higher with the addition of catalyst than without, with MRR as high as 709.2 nm/h and surface roughness as low as 2.257 nm. Based on previous research results, this DTCMP achieves higher MRR compared with traditional CMP. In addition, the catalyst can promote the oxidation reaction on the SiC surface, accelerate the generation of surface oxide films, and thus reduce the surface hardness. Catalyst-assisted DTCMP exhibits superior performance in terms of efficiency, cost-effectiveness, and environmental sustainability, which can be an efficient method for preparing ultra-smooth SiC semiconductor materials and may inspire new ideas for their high-efficiency production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Goel S (2014) The current understanding on the diamond machining of silicon carbide. J Phys D Appl Phys 47(24):243001. https://doi.org/10.1088/0022-3727/47/24/243001

    Article  ADS  CAS  Google Scholar 

  2. Cui J, Zhang Z, Liu D, Zhang D, Hu W, Zou L, Lu Y, Zhang C, Lu H, Tang C, Jiang N, Parkin IP, Guo D (2019) Unprecedented piezoresistance Coefficient in Strained silicon carbide. Nano Lett 19(9):6569–6576. https://doi.org/10.1021/acs.nanolett.9b02821

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Kimoto T, Cooper JA (2014) Fundamentals of silicon carbide technology: growth, characterization, devices and applications. John Wiley & Sons

    Book  Google Scholar 

  4. Uneda M, Fujii K (2020) Highly efficient chemical mechanical polishing method for SiC substrates using enhanced slurry containing bubbles of ozone gas. Precis Eng 64:91–97. https://doi.org/10.1016/j.precisioneng.2020.03.015

    Article  Google Scholar 

  5. Zhang Y, Chen H, Liu D, Deng H (2020) High efficient polishing of sliced 4H-SiC (0001) by molten KOH etching. Appl Surf Sci 514:145957. https://doi.org/10.1016/j.apsusc.2020.146532

    Article  CAS  Google Scholar 

  6. Zhang P, Yang JF, Li L (2020) Trajectory uniformity of the double-sided mechanical polishing of SiC single crystal substrate. Mat Sci Semicon Proc 107:104814. https://doi.org/10.1016/j.mssp.2019.104814

    Article  CAS  Google Scholar 

  7. Deng H, Endo K, Yamamura K (2017) Damage-free finishing of CVD-SiC by a combination of dry plasma etching and plasma-assisted polishing. Int J Mach Tool Manu 115:38–46. https://doi.org/10.1016/j.ijmachtools.2016.11.002

    Article  Google Scholar 

  8. Zhang LF, Deng H (2020) Highly efficient and damage-free polishing of GaN (0001) by electrochemical etching-enhanced CMP process. Appl Surf Sci 514:145957. https://doi.org/10.1016/j.apsusc.2020.145957

    Article  CAS  Google Scholar 

  9. Yuan ZW, He Y, Sun XW, Wen Q (2017) UV-TiO2 photocatalysis-assisted chemical mechanical polishing 4H-SiC wafer. Mater Manuf Process 33(11):1214–1222. https://doi.org/10.1080/10426914.2017.1364855

    Article  CAS  Google Scholar 

  10. Deng J, Lu J, Zeng S, Xiong Q, Yan Q, Pan J (2022) Preparation and processing properties of magnetically controlled abrasive solidification orientation—solid-phase Fenton reaction lapping-polishing plate for single-crystal 4H-SiC. Surf Interfaces 29:101646. https://doi.org/10.1016/j.surfin.2021.101646

    Article  CAS  Google Scholar 

  11. Qian C, Fan Z, Tian Y, Liu Y, Han J, Wang J (2021) A review on magnetic abrasive finishing. Int J Adv Manuf Tech 112:619–634. https://doi.org/10.1007/s00170-020-06363-x

    Article  Google Scholar 

  12. Ma GL, Li SJ, Liu FL, Zhang C, Jia Z, Yin XC (2022) A review on precision polishing technology of single-crystal SiC. Crystals 12(1):101. https://doi.org/10.3390/cryst12010101

    Article  CAS  Google Scholar 

  13. Hsieh CH, Chang CY, Hsiao YK, Chen CA, Tu CC, Kuo HC (2022) Recent advances in silicon carbide chemical mechanical polishing technologies. Micromachines (Basel) 13(10):1752. https://doi.org/10.3390/mi13101752

    Article  PubMed  Google Scholar 

  14. Zantye PB, Kumar A, Sikder AK (2004) Chemical mechanical planarization for microelectronics applications. Mat Sci Eng R 45(3–6):89–220. https://doi.org/10.1016/j.mser.2004.06.002

    Article  CAS  Google Scholar 

  15. Lee H, Kim H, Jeong H (2021) Approaches to sustainability in chemical mechanical polishing (CMP): a review. Int J Pr Eng Man-GT 9(1):349–367. https://doi.org/10.1007/s40684-021-00406-8

    Article  Google Scholar 

  16. Zhang ZY, Liu J, Hu W, Zhang LZ, Xie WX, Liao LX (2021) Chemical mechanical polishing for sapphire wafers using a developed slurry. J Manuf Process 62:762–771. https://doi.org/10.1016/j.jmapro.2021.01.004

    Article  Google Scholar 

  17. Lin YC, Kao CH (2004) A study on surface polishing of SiC with a tribochemical reaction mechanism. Int J Adv Manuf Tech 25(1–2):33–40. https://doi.org/10.1007/s00170-003-1873-x

    Article  Google Scholar 

  18. Muratov VA, Fischer TE (2000) Tribochemical polishing. Annu Rev Mater Sci 30(1):27–51. https://doi.org/10.1146/annurev.matsci.30.1.27

    Article  ADS  CAS  Google Scholar 

  19. Su JX, X R, W YP, L JJ, L HX (2020) Study on lapping paste of 6H–SiC single-crystal substrate in tribochemical mechanical lapping. J Inst Eng (India): Series E 101(2):141-148. https://doi.org/10.1007/s40034-020-00167-0

  20. Yuan S, Guo X, Lu M, Jin Z, Kang R, Guo D (2019) Diamond nanoscale surface processing and tribochemical wear mechanism. Diam Relat Mater 94:8–13. https://doi.org/10.1016/j.diamond.2019.02.012

    Article  ADS  CAS  Google Scholar 

  21. Rogov VV, Rublev ND, Krotenko TL, Troyan AV (2008) A study of intensity of tribochemical contact interaction between a polishing compound and sapphire in machining. J Superhard Mater 30(4):273–275. https://doi.org/10.3103/S1063457608040072

    Article  Google Scholar 

  22. Chen JP, Peng YA, Wang ZK, Sun T, Su JX, Zuo DW, Zhu YW (2022) Tribological effects of loose alumina abrasive assisted sapphire lapping by a fixed agglomerated diamond abrasive pad (FADAP). Mat Sci Semicon Proc 143:106556. https://doi.org/10.1016/j.mssp.2022.106556

    Article  CAS  Google Scholar 

  23. Chen J, Sun T, Su J, Li J, Zhou P, Peng Y, Zhu Y (2021) A novel agglomerated diamond abrasive with excellent micro-cutting and self-sharpening capabilities in fixed abrasive lapping processes. Wear 464–465. https://doi.org/10.1016/j.wear.2020.203531

  24. Zhou Y, Pan GS, Shi XL, Gong H, Luo GH, Gu ZH (2014) Chemical mechanical planarization (CMP) of on-axis Si-face SiC wafer using catalyst nanoparticles in slurry. Surf Coat Tech 251:48–55. https://doi.org/10.1016/j.surfcoat.2014.03.044

    Article  CAS  Google Scholar 

  25. Zhang P, Chen G, Ni Z, Wang Y, Teng K, Qian S, Bian D, Zhao Y (2021) The effect of Cu2+ ions and glycine complex on chemical mechanical polishing (CMP) Performance of SiC substrates. Tribol Lett 69(3):1–10. https://doi.org/10.1007/s11249-021-01468-0

    Article  ADS  CAS  Google Scholar 

  26. Xu SP, Lu JB, Yan QS, Song T, Pan JS (2017) Solid catalysts based on fenton reaction for sic wafer in chemical mechanical polishing. J Mech Eng 53(21). https://doi.org/10.3901/jme.2017.21.167

  27. Deng H, Liu N, Endo K, Yamamura K (2018) Atomic-scale finishing of carbon face of single crystal SiC by combination of thermal oxidation pretreatment and slurry polishing. Appl Surf Sci 434:40–48. https://doi.org/10.1016/j.apsusc.2017.10.159

    Article  ADS  CAS  Google Scholar 

  28. Saitoh Y, Itoh H, Wada K, Sakai M, Horii T, Hiratsuka K, Tanaka S, Mikamura Y (2016) 150 A SiC V-groove trench gate MOSFET with 6× 6 mm2 chip size on a 150 mm C-face in-house epitaxial wafer. Jpn J Appl Phys 55(4S):04ER05. https://doi.org/10.7567/JJAP.55.04ER05

    Article  CAS  Google Scholar 

  29. Wang X, Chen J, Bu Z, Wang H, Wang W, Li W, Sun T (2021) Accelerated C-face polishing of silicon carbide by alkaline polishing slurries with Fe3O4 catalysts. J Environ Chem Eng 9(6):106863. https://doi.org/10.1016/j.jece.2021.106863

    Article  CAS  Google Scholar 

  30. Liu X, He S, Yang Y, Yao B, Tang Y, Luo L, Zhi D, Wan Z, Wang L, Zhou Y (2021) A review on percarbonate-based advanced oxidation processes for remediation of organic compounds in water. Environ Res 200:111371. https://doi.org/10.1016/j.envres.2021.111371

    Article  CAS  PubMed  Google Scholar 

  31. Zhang BT, Kuang LL, Teng YG, Fan MH, Ma Y (2021) Application of percarbonate and peroxymonocarbonate in decontamination technologies. J Environ Sci 105:100–115. https://doi.org/10.1016/j.jes.2020.12.031

    Article  CAS  Google Scholar 

  32. Qi W, Cao X, Xiao W, Wang Z, Su J (2021) Study on the mechanism of solid-Phase oxidant action in tribochemical mechanical polishing of SiC single crystal substrate. Micromachines (Basel) 12(12):1547. https://doi.org/10.3390/mi12121547

    Article  PubMed  Google Scholar 

  33. Wada T, Nakano M, Koga N (2015) Multistep kinetic behavior of the thermal decomposition of granular sodium percarbonate: hindrance effect of the outer surface layer. J Phys Chem A 119(38):9749–9760. https://doi.org/10.1021/acs.jpca.5b07042

    Article  CAS  PubMed  Google Scholar 

  34. Pan G, Zhou Y, Luo G, Shi X, Zou C, Gong H (2013) Chemical mechanical polishing (CMP) of on-axis Si-face 6H-SiC wafer for obtaining atomically flat defect-free surface. J Mater Sci-Mater El 24(12):5040–5047. https://doi.org/10.1007/s10854-013-1519-1

    Article  CAS  Google Scholar 

  35. Liu B, Zhan Y, Xie R, Huang H, Li K, Zeng Y, Shrestha RP, Kim Oanh NT, Winijkul E (2019) Efficient photocatalytic oxidation of gaseous toluene in a bubbling reactor of water. Chemosphere 233:754–761. https://doi.org/10.1016/j.chemosphere.2019.06.002

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Yin T, Zhao P, Doi T, Kurokawa S, Jiang J (2021) Effect of using high-pressure gas atmosphere with UV photocatalysis on the CMP characteristics of a 4H-SiC substrate. ECS J Solid State Sc Technol. 10(2):024010. https://doi.org/10.1149/2162-8777/abe7a8

  37. Poddar MK, Ryu HY, Yerriboina NP, Jeong Y-A, Lee JH, Kim TG, Kim JH, Park JD, Lee MG, Park CY, Han SJ, Choi JG, Park JG (2019) Nanocatalyst-induced hydroxyl radical (·OH) slurry for tungsten CMP for next-generation semiconductor processing. J Mater Sci 55(8):3450–3461. https://doi.org/10.1007/s10853-019-04239-4

    Article  ADS  CAS  Google Scholar 

  38. Hariharaputhiran M, Zhang J, Ramarajan S, Keleher JJ, Li Y, Babu SV (2000) Hydroxyl radical formation in H2O2 - amino acid mixtures and chemical mechanical polishing of copper. J Electrochem Soc 147(10):3820–3826. https://doi.org/10.1149/1.1393979

    Article  CAS  Google Scholar 

  39. Chen CQ, Ren HJ, Zhou JK, Luo Y, Zhan YY, Au CT, Lin XY, Jiang LL (2020) Cu/Fe3O4 catalyst for water gas shift reaction: insight into the effect of Fe2+ and Fe3+ distribution in Fe3O4. Int J Hydrogen Energ 45(15):8456–8465. https://doi.org/10.1016/j.ijhydene.2020.01.023

    Article  CAS  Google Scholar 

  40. Kubota A, Yoshimura M, Fukuyama S, Iwamoto C, Touge M (2012) Planarization of C-face 4H-SiC substrate using Fe particles and hydrogen peroxide solution. Precis Eng 36(1):137–140. https://doi.org/10.1016/j.precisioneng.2011.09.003

    Article  Google Scholar 

  41. Oh S, Seok J (2008) Modeling of chemical–mechanical polishing considering thermal coupling effects. Microelectron Eng 85(11):2191–2201. https://doi.org/10.1016/j.mee.2008.04.037

    Article  CAS  Google Scholar 

  42. Wang W, Zhang B, Shi Y, Zhou D, Wang R (2022) Improvement in dispersion stability of alumina suspensions and corresponding chemical mechanical polishing performance. Appl Surf Sci 597:153703. https://doi.org/10.1016/j.apsusc.2022.153703

    Article  CAS  Google Scholar 

  43. Presser V, Krummhauer O, Nickel KG, Kailer A, Berthold C, Raisch C (2009) Tribological and hydrothermal behaviour of silicon carbide under water lubrication. Wear 266(7–8):771–781. https://doi.org/10.1016/j.wear.2008.10.001

    Article  CAS  Google Scholar 

  44. Hornetz B, Michel HJ, Halbritter J (1994) ARXPS studies of SiO2-SiC interfaces and oxidation of 6H-SiC single crystal Si-(001) and C-(001) surfaces. J Mater Res 9(12):3088–3094. https://doi.org/10.1557/JMR.1994.3088

  45. Wang W, Zhang B, Shi Y, Zhou J, Wang R, Zeng N (2022) Improved chemical mechanical polishing performance in 4H-SiC substrate by combining novel mixed abrasive slurry and photocatalytic effect. Appl Surf Sci 575:151676. https://doi.org/10.1016/j.apsusc.2021.151676

    Article  CAS  Google Scholar 

  46. Chen JP, Zhu YW, Peng YA, Guo JT, Ding C (2020) Silica-assisted fixed agglomerated diamond abrasive polishing. J Manuf Processes 59:595–603. https://doi.org/10.1016/j.jmapro.2020.09.013

    Article  Google Scholar 

  47. Yuan Z, He Y, Jin Z, Zheng P, Li Q (2017) Prediction of the interface temperature rise in tribochemical polishing of CVD diamond. Chin J Mech Eng-en 30(2):310–320. https://doi.org/10.1007/s10033-017-0087-3

    Article  CAS  Google Scholar 

  48. Kuhlmann-Wilsdorf D (1985) Flash temperatures due to friction and Joule heat at asperity contacts. Wear 105(3):187–198. https://doi.org/10.1016/0043-1648(85)90067-5

    Article  Google Scholar 

  49. Lipkin L, Palmour J (1996) Improved oxidation procedures for reduced SiO2/SiC defects. J Electron Mater 25:909–915. https://doi.org/10.1007/BF02666657

  50. Liu GL, Huang ZR, Liu XJ, Jiang DL (2010) Removal Behaviors of different SiC ceramics during polishing. J Mater Sci Technol 26(2):125–130. https://doi.org/10.1016/S1005-0302(10)60020-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. U1804142) and the Science and Technology Research Project of Henan Province (Grant No.192102210058).

Author information

Authors and Affiliations

Authors

Contributions

Mingpu Xue: investigation, data curation, and writing—original draft preparation. Wen Xiao: investigation and resources. Tianyi Zhang: investigation. Zhankui Wang: supervision and funding acquisition. Jianxiu Su: conceptualization, methodology, validation, and writing—review & editing, supervision, project administration, and funding acquisition. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianxiu Su.

Ethics declarations

Conflict of interest

The authors declare have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, M., Xiao, W., Zhang, T. et al. Catalytic mechanism of tribochemical mechanical polishing on (0001) C-face of single crystal 6H-SiC substrate. Int J Adv Manuf Technol 131, 2311–2323 (2024). https://doi.org/10.1007/s00170-023-11494-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11494-y

Keywords

Navigation