Skip to main content
Log in

Optimization of manufacturing parameters for Fe–25Cr–13Co magnetic alloy by using Taguchi technique

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Fe–25Cr–13Co (wt.%) magnetic alloy was produced via vacuum induction melting and investment casting technique. Mechanical working, controlled thermomagnetic, and step aging treatments were utilized to induce anisotropic magnetic characteristics in the alloy samples. Core issue for producing permanent magnets is to get high magnetic properties at higher working temperatures by using low-priced elements. This work covers the detail of processing steps and Taguchi design of experiment utilized for processing the low cost and modest performance Fe–Cr–Co magnets. Alloy state, quenching medium, magnetic field strength during thermomagnetic treatment, and step aging treatment cycle time were selected as control factors for the Taguchi experiments and results were analyzed for SN ratios and main effects. The Taguchi L9 experimentation revealed that when 50%-forged alloy quenched in liquid nitrogen during the solution treatment, holding in 6 kG during isothermal-magnetic treatment, and lastly aged for 24 h at low temperature yielded maximum magnetic properties, i.e., 3.456 MGOe. The metallurgical reasons for increase or decrease in magnetic properties are discussed, considering x-ray diffraction, differential thermal analysis, and microstructural results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Khan S, Imran SH, Khan M, Khan N (2016) Practical implementation of the on-board solar photovoltaic for the passenger transportation. Int J Smart Grid Clean Energy 168–173. https://doi.org/10.12720/sgce.5.3.168-173

  2. Sugimoto S (2011) Current status and recent topics of rare-earth permanent magnets. J Phys D Appl Phys 44(6):064001. https://doi.org/10.1088/0022-3727/44/6/064001

    Article  Google Scholar 

  3. Akhtar S, Haider A, Ahmad Z, Farooque M (2010) Development of NdFeB magnet through hydrogen decrepitation. Key Eng Mater 442:263–267. https://doi.org/10.4028/www.scientific.net/KEM.442.263

    Article  Google Scholar 

  4. Akhtar S, Khan M, Khan AN, Jaffery SHI (2020) Effect of microstructure on the coercivity of SmCo5 intermetallic compound. Mater Trans 61(11):2195–2200. https://doi.org/10.2320/matertrans.MT-M2019350

    Article  Google Scholar 

  5. Haider A, Akhtar S, Ahmad Z, Farooque M (2010) Effect of thermal treatment on coercivity of SmCo5 sintered magnets. Key Eng Mater 442:250–254. https://doi.org/10.4028/www.scientific.net/KEM.442.250

    Article  Google Scholar 

  6. Kaneko H, Homma M, Nakamura K (1972) New ductile permanent magnet of Fe-Cr-Co system. 1088(1):1088–1092. https://doi.org/10.1063/1.2953814

  7. Mohapatra J, Xing M, Elkins J, Liu JP (2020) Hard and semi-hard magnetic materials based on cobalt and cobalt alloys. J Alloys Compd 824:153874. https://doi.org/10.1016/j.jallcom.2020.153874

    Article  Google Scholar 

  8. He Y, Zhang H, Su H, Shen P, Hou Y, Zhou D (2022) In situ alloying of Fe-Cr-Co permanent magnet by selective laser melting of elemental iron, chromium and cobalt mixed powders. Metals (Basel) 12(10):1634. https://doi.org/10.3390/met12101634

    Article  Google Scholar 

  9. Belozerov EV et al (2012) High-strength magnetically hard Fe-Cr-Co-based alloys with reduced content of chromium and cobalt. Phys Met Metallogr 113(4):319–325. https://doi.org/10.1134/S0031918X12040023

    Article  Google Scholar 

  10. Milyaev IM, Alymov MI, Bouryakov IN, Yusupov VS, Abashev DM (2018) Magnetic properties of powder hard magnetic Fe-27Cr-10Co-0.5Mo and Fe-27Cr-10Co-2Mo alloys. IOP Conf Ser Mater Sci Eng 347(1):0-7. https://doi.org/10.1088/1757-899X/347/1/012053

    Article  Google Scholar 

  11. Garganeev AG, Padalko DA (2014) Application of Fe-Cr-Co hard magnetic materials as the alternative to Sm-Co and Nd-Fe-B. In: 2014 15th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), pp 392–394. https://doi.org/10.1109/EDM.2014.6882555

  12. Chróst K, Kłodaś J (1989) The influence of heat treatment conditions in an external magnetic field on the structure and magnetic properties of the Fe-25Cr-12Co alloy. J Magn Magn Mater 80(2–3):359–366. https://doi.org/10.1016/0304-8853(89)90142-X

    Article  Google Scholar 

  13. Findik F (2012) Improvements in spinodal alloys from past to present. Mater Des 42:131–146. https://doi.org/10.1016/j.matdes.2012.05.039

    Article  Google Scholar 

  14. Hao Han X et al (2018) Microstructure and phase transition of Fe-24Cr-12Co-1.5Si ribbons. J Alloys Compd 731:10–17. https://doi.org/10.1016/j.jallcom.2017.10.029

    Article  Google Scholar 

  15. Jin S, Chin G (1987) Fe-Cr-Co magnets. IEEE Trans Magn 23(5):3187–3192. https://doi.org/10.1109/TMAG.1987.1065353

    Article  Google Scholar 

  16. Cahn JW (1961) On spinodal decomposition. Acta Metall 9(9):795–801. https://doi.org/10.1016/0001-6160(61)90182-1

    Article  Google Scholar 

  17. Xiong W, Selleby M, Chen Q, Odqvist J, Du Y (2010) Phase equilibria and thermodynamic properties in the Fe-Cr system. Crit Rev Solid State Mater Sci 35(2):125–152. https://doi.org/10.1080/10408431003788472

    Article  Google Scholar 

  18. Sun XY, Xu CY, Zhen L, Gao RS, Xu RG (2004) Microstructure and magnetic properties of Fe–25Cr–12Co–1Si alloy thermo-magnetically treated in intense magnetic field. J Magn Magn Mater 283(2–3):231–237. https://doi.org/10.1016/j.jmmm.2004.05.027

    Article  Google Scholar 

  19. Brenner S, Camus P, Miller M, Soffa W (1984) Phase separation and coarsening in FeCrCo alloys. Acta Metall 32(8):1217–1227. https://doi.org/10.1016/0001-6160(84)90128-7

    Article  Google Scholar 

  20. Zhang L, Xiang Z, Li X, Wang E (2018) Spinodal decomposition in Fe-25Cr-12Co alloys under the influence of high magnetic field and the effect of grain boundary. Nanomaterials 8(8):1–14. https://doi.org/10.3390/nano8080578

    Article  Google Scholar 

  21. Altafi M, Ghasemi A, Sharifi EM (2019) The influence of cold rolling and thermomagnetic treatment on the magnetic and mechanical properties of Fe-23Cr-9Co alloy. J Magn Magn Mater 491(July):165537. https://doi.org/10.1016/j.jmmm.2019.165537

    Article  Google Scholar 

  22. Haider A, Jaffery SHI, Khan AN, Khan M (2022) Processing of silicon added Fe-Cr-Co hard magnetic alloy by two stage thermomagnetic treatment technique. Proc IMechE B J Eng Manuf. https://doi.org/10.1177/09544054221136391

    Article  Google Scholar 

  23. Baydarov SY, Kamynin AV, Kraposhin VS, Chernyshev DL (2020) Problems of development of Mim technology in Russia as applied to production of permanent magnets. Met Sci Heat Treat 61(9–10):559–562. https://doi.org/10.1007/s11041-020-00461-z

    Article  Google Scholar 

  24. Green ML, Sherwood RC, Wong CC (1982) Powder metallurgy processing of CrCoFe permanent magnet alloys containing 5–25 wt. % Co. J Appl Phys 53(3):2398–2400. https://doi.org/10.1063/1.330824

    Article  Google Scholar 

  25. Shatsov AA (2004) Powder materials of the Fe - Cr - Co system. Met Sci Heat Treat 46(3–4):152–155. https://doi.org/10.1023/B:MSAT.0000036668.48856.02

    Article  Google Scholar 

  26. Gavrikov IS, Chernyshev BD, Kamynin AV, Everstov AA, Belonozhkin BY, Kraposhin VS (2020) Fabrication of granulate from a Fe – Cr – Co alloy with reduced cobalt content for synthesizing permanent magnets by the MIM process. Met Sci Heat Treat 62(7–8):513–517. https://doi.org/10.1007/s11041-020-00594-1

    Article  Google Scholar 

  27. Efremov DV, Gerasimova AA (2021) Production of Fe–Cr–Co-based magnets by selective laser sintering. Steel Transl 51(10):688–692. https://doi.org/10.3103/S0967091221100028

    Article  Google Scholar 

  28. Homma M, Okada M, Minowa T, Horikoshi E (1981) Fe-Cr-Co permanent Magnet alloys heat-treated in the ridge region of the miscibility gap. IEEE Trans Magn 17(6):3473–3478. https://doi.org/10.1109/TMAG.1981.1061702

    Article  Google Scholar 

  29. Xiang Z et al (2021) Ultrafine microstructure and hardness in Fe-Cr-Co alloy induced by spinodal decomposition under magnetic field. Mater Des 199:109383. https://doi.org/10.1016/j.matdes.2020.109383

    Article  Google Scholar 

  30. Okada M, Thomas G, Homma M, Kaneko H (1978) Microstructure and magnetic properties of Fe-Cr-Co alloys. IEEE Trans Magn 14(4):245–252. https://doi.org/10.1109/TMAG.1978.1059752

    Article  Google Scholar 

  31. Kurt M, Bagci E, Kaynak Y (2009) Application of Taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes. Int J Adv Manuf Technol 40(5–6):458–469. https://doi.org/10.1007/s00170-007-1368-2

    Article  Google Scholar 

  32. Rojas JGM, Ghasri-Khouzani M, Wolfe T, Fleck B, Henein H, Qureshi AJ (2021) Preliminary geometrical and microstructural characterization of WC-reinforced NiCrBSi matrix composites fabricated by plasma transferred arc additive manufacturing through Taguchi-based experimentation. Int J Adv Manuf Technol 113(5–6):1451–1468. https://doi.org/10.1007/s00170-020-06388-2

    Article  Google Scholar 

  33. Taguchi G, Phadke MS (1989) Quality engineering through design optimization. In: Quality Control, Robust Design, and the Taguchi Method. Springer US, Boston, pp 77–96

  34. Zhukova EK, Malinina RI, Zhukov DG, Shubakov VS, Menushenkov VP (2014) Heat treatment and magnetic properties of cold-deformed alloy 30Kh15K2MT. Met Sci Heat Treat 56(1–2):74–77. https://doi.org/10.1007/s11041-014-9706-0

    Article  Google Scholar 

  35. Phadke MS (1995) Quality engineering using robust design. Prentice Hall PTR

    Google Scholar 

  36. Altafi M, Mohammad Sharifi E, Ghasemi A (2020) The effect of various heat treatments on the magnetic behavior of the Fe-Cr-Co magnetically hard alloy. J Magn Magn Mater 507(9):166837. https://doi.org/10.1016/j.jmmm.2020.166837

    Article  Google Scholar 

  37. Zhang H, Ji X, Ma D, Tong M (2020) Effect of aging temperature on the austenite reversion and mechanical properties of a Fe e 10Cr e 10Ni cryogenic maraging steel. J Mater Res Technol 11:98–111. https://doi.org/10.1016/j.jmrt.2020.12.096

    Article  Google Scholar 

  38. Hsiao CN, Chiou CS, Yang JR (2002) Aging reactions in a 17–4 PH stainless steel. Mater Chem Phys 74(2):134–142. https://doi.org/10.1016/S0254-0584(01)00460-6

    Article  Google Scholar 

  39. Vodárek V, Rožnovská G, Kuboň Z, Volodarskaja A, Palupčíková R (2022) The effect of long-term ageing at 475 °C on microstructure and properties of a precipitation hardening martensiticstainless steel. Metals (Basel) 12(10):1643. https://doi.org/10.3390/met12101643

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The first author is the investigator; the second author is supervisor. The third and fourth authors are co-supervisors and helped in design of experiment, investigation and result analysis.

Corresponding author

Correspondence to Ali Haider.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haider, A., Jaffery, S.H.I., Khan, A.N. et al. Optimization of manufacturing parameters for Fe–25Cr–13Co magnetic alloy by using Taguchi technique. Int J Adv Manuf Technol 126, 1363–1378 (2023). https://doi.org/10.1007/s00170-023-11201-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11201-x

Keywords

Navigation